The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characteriz...The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China(SEC), northern China(NC), and northeastern China(NEC). The frequency of HDEs averaged over China in the present day(PD,1994–2011) is double that in the early period(EP, 1964–81);the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model(MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes,suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas(GHG) concentrations dominates the simulated decadal changes,increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol(AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.展开更多
Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variatio...Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variations are related to a large-scale circulation shift over the Eurasian Continent. The effects of underlying sea ice and sea surface temperature(SST) anomalies on the Ural PAE and the related atmospheric circulation were explored by Atmospheric Model Intercomparison Project(AMIP) experiments from the Coupled Model Intercomparison Project Phase 6 and by sensitivity experiments using the Atmospheric General Circulation Model(AGCM). The AMIP experiment results suggest that the underlying sea ice and SST anomalies play important roles. The individual contributions of sea ice loss in the Barents-Kara Seas and the SST anomalies linked to the phase transition of the Pacific Decadal Oscillation(PDO) and Atlantic Multidecadal Oscillation(AMO) are further investigated by AGCM sensitivity experiments isolating the respective forcings.The sea ice decline in Barents-Kara Seas triggers an atmospheric wave train over the Eurasian mid-to-high latitudes with positive anomalies over the Urals, favoring the occurrence of Ural PAEs. The shift in the PDO to its negative phase triggers a wave train propagating downstream from the North Pacific. One positive anomaly lobe of the wave train is located over the Ural Mountains and increases the PAE there. The negative-to-positive transition of the AMO phase since the late-1990s causes positive 500-h Pa height anomalies south of the Ural Mountains, which promote a southward shift of Ural PAE.展开更多
The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed t...The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.展开更多
Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in easte...Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in eastern China over recent decades.Spatial trend analysis displays pronounced warming in inland midlatitudes and the Yangtze River Valley,with increased humidity in coastal regions.EOF results indicate intensifying dry heatwaves in northern China,while the Yangtze River Valley sees more frequent dry heatwaves.On the other hand,Indochina and regions north of 25°N also experience intensified wet heatwaves,corresponding to regional humidity increases.Composite analysis is conducted based on different situations:strong,frequent dry or wet heatwaves.Strong dry heatwaves are influenced by anticyclonic circulations over northern China,accompanied by warming SST anomalies around the coastal midlatitudes of the western North Pacific(WNP).Frequent dry heatwaves are related to strong subsidence along with a strengthened subtropical high over the WNP.Strong and frequent wet heatwaves show an intensified Okhotsk high at higher latitudes in the lower troposphere,and a negative circumglobal teleconnection wave train pattern in the upper troposphere.Decaying El Niño SST patterns are observed in two kinds of wet heatwave and frequent dry heatwave years.Risk analysis indicates that El Niño events heighten the likelihood of these heatwaves in regions most at risk.As global warming continues,adapting and implementing mitigation strategies toward extreme heatwaves becomes crucial,especially for the aforementioned regions under significant heat stress.展开更多
This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features ...This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).展开更多
The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability...The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.展开更多
The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ...The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.展开更多
Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a...Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.展开更多
This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influ...This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.展开更多
Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechani...Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechanism consistent with the major seasonal occurrence period of extreme heat events in North China(NCSH).Observational analyses show significant decadal variability in NCSH for 1981–2021,potentially linked to the Indo-Pacific warm pool and Northwest Pacific Ocean dipole(IPOD)in early-to-mid summer.Dynamic diagnostic analysis and the linear baroclinic model(LBM)show that the positive IPOD in early-to-mid summer can excite upward vertical wind anomalies in the South China-East China Sea region,shifting the position of the western Pacific subtropical high(WPSH)to the east or weakening the degree of its control of the South China-East China Sea region,thus generating a positive geopotential height quadrupole(EAWPQ)pattern in the East Asia-Northwest Pacific region.Subsequently,the EAWPQ can cause air compression(expansion)over North China by regulating the tropospheric thickness anomalies in North China,thus increasing(decreasing)NCSH.Finally,an empirical model that incorporates the linear trend can better simulate the decadal NCSH compared to an empirical model based solely on the IPOD index,suggesting that the decadal variability of NCSH may be a combined contribution of the decadal IPOD and external linear forcing.展开更多
China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ...China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ozone(O3).With the implementation of air pollution prevention and control actions in the last five years,the PM pollution in China has been substantially reduced.In contrast,under the conditions of the urban air pollution complex,the elevated O3 levels in city clusters of eastern China,especially in warm seasons,have drawn increasing attention.Emissions of air pollutants and their precursors not only contribute to regional air quality,but also alter climate.Climate change in turn can change chemical processes,long-range transport,and local meteorology that influence air pollution.Compared to PM,less is known about O3 pollution and its climate effects over China.Here,we present a review of the main findings from the literature over the period 2011-18 with regard to the characteristics of O3 concentrations in China and the mechanisms that drive its interannual to decadal variations,aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps.We also review regional and global modeling studies that have investigated the impacts of tropospheric O3 on climate,as well as the projections of future tropospheric O3 owing to climate and/or emission changes.展开更多
By dint of grid information from 1948 to 2007,the summer monsoon in Afro-Asian area and the precipitation in corresponding atmosphere circulation situation during the strong and weak Afro-Asian monsoon period are stud...By dint of grid information from 1948 to 2007,the summer monsoon in Afro-Asian area and the precipitation in corresponding atmosphere circulation situation during the strong and weak Afro-Asian monsoon period are studied.The results suggest that the strong or weak Afro-Asian monsoon has pretty good corresponding relation with summer precipitation in Afro-Asian area.When summer monsoon weakens year after year,precipitation also decreases every year.展开更多
In this study, the relationship between El Nifio-Southern Oscillation (ENSO) and winter rainfall over Southeast China (SC) is demonstrated based on instrumental and reanalysis data. The results show that ENSO and ...In this study, the relationship between El Nifio-Southern Oscillation (ENSO) and winter rainfall over Southeast China (SC) is demonstrated based on instrumental and reanalysis data. The results show that ENSO and SC winter rainfall (ENSO-SC rainfall) are highly correlated and intimately coupled through an anomalous high pressure over the northwestern Pacific. In mature phase, El Nifio (La Nina) events can cause more (less) rainfall over SC in winter. Due to the persistence and spring barrier of ENSO, SC winter rainfall has potential predictability of about half a year ahead with ENSO as a predictor.展开更多
Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal ...Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal (50 70-yr) modes. Joint propagating patterns of sea surface temperature (SST) and sea level pressure (SLP) anomalies in the North Pacific for the two modes are revealed by using the techniques of multi-channel singular spectrum analysis (MSSA) and linear regression analysis with the global sea surface temperature (GISST) data and the northern hemispheric SLP data for the common period 1903 1998. Significant differences in spatio-temporal structures are found between the two modes. For the bidecadal mode, SST anomalies originating from the Gulf of Alaska appear to slowly spread southwestward, inducing a reversal of early SST anomalies in the central North Pacific. Due to further westward spreading, the SST variation of the central North Pacific leads that of the Kuroshio-Oyashio Extension (KOE) region by approximately 4 to 5 years. Concomitantly, SLP anomalies spread over most parts of the North Pacific during the mature phase and then change into an NPO(North Pacific Oscillation)-like pattern during the transition phase. For the pentadecadal mode, SST anomalies develop in the southeast tropical Pacific and propagate along the North American coast to the mid-latitudes; meanwhile, SST anomalies with the same polarity in the western tropical Pacific expand northward to Kuroshio and its extension region; both merge into the central North Pacific reversing the sign of early SST anomalies there. Accompanying SLP anomalies are characterized by an NPO-like pattern during the mature phase while they are dominant over the North Pacific during the transitional phase. The bidecadal and pentadecadal modes have different propagating patterns, suggesting that the two interdecadal modes may arise from different physical mechanisms.展开更多
Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5), the El Ni o(EN) and La Ni a(LN) events in positive and negative Pacific Dec...Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5), the El Ni o(EN) and La Ni a(LN) events in positive and negative Pacific Decadal Oscillation(PDO) phases are examined. In the observational data, with EN(LN) events the positive(negative) SST anomaly in the equatorial eastern Pacific is much stronger in positive(negative) PDO phases than in negative(positive) phases. Meanwhile,the models cannot reasonably reproduce this difference. Besides, the modulation of ENSO frequency asymmetry by the PDO is explored. Results show that, in the observational data, EN is 300% more(58% less) frequent than LN in positive(negative)PDO phases, which is significant at the 99% confidence level using the Monte Carlo test. Most of the CMIP5 models exhibit results that are consistent with the observational data.展开更多
This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both...This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both mei-yu precipitation and mei-yu duration are characterized by significant decadal variability. Their decadal components are closely correlated with a triple mode of North Atlantic SSTA in the preceding winter. Regression analysis demonstrates that the wintertime North Atlantic SSTA may impose a delayed impact on East Asia Summer Monsoon (EASM) circulation and mei-yu on the decadal timescale. The persistency of SSTA plays an important role during this course. The triple SSTA mode can persist from winter until late spring. It is suggested that the springtime SSTA may excite a stationary wave-train propagating from west Eurasia to East Asia and exert an impact on mei-yu.展开更多
This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the ...This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.展开更多
Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is f...Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).展开更多
基金the University of Reading, funded by the UK–China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fundsupported by the National Natural Science Foundation of China (Grant Nos. 42030603 and 42175044)+1 种基金supported by CSSP-China. NPK was supported by an Independent Research Fellowship from the Natural Environment Research Council (Grant No. NE/L010976/1)supported by the National Centre for Atmospheric Science via the NERC/GCRF programme “Atmospheric hazards in developing countries: risk assessment and early warnings ” (ACREW)。
文摘The frequency and duration of observed concurrent hot and dry events(HDEs) over China during the growing season(April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China(SEC), northern China(NC), and northeastern China(NEC). The frequency of HDEs averaged over China in the present day(PD,1994–2011) is double that in the early period(EP, 1964–81);the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model(MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes,suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas(GHG) concentrations dominates the simulated decadal changes,increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol(AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.
基金jointly supported by the National Key Research and Development Program of China (Grant No.2018YFA0606403)the National Natural Science Foundation of China (Grant No.41790473)the Beijing Natural Science Foundation (8234068)。
文摘Observational analyses demonstrate that the Ural persistent positive height anomaly event(PAE) experienced a decadal increase around the year 2000, exhibiting a southward displacement afterward. These decadal variations are related to a large-scale circulation shift over the Eurasian Continent. The effects of underlying sea ice and sea surface temperature(SST) anomalies on the Ural PAE and the related atmospheric circulation were explored by Atmospheric Model Intercomparison Project(AMIP) experiments from the Coupled Model Intercomparison Project Phase 6 and by sensitivity experiments using the Atmospheric General Circulation Model(AGCM). The AMIP experiment results suggest that the underlying sea ice and SST anomalies play important roles. The individual contributions of sea ice loss in the Barents-Kara Seas and the SST anomalies linked to the phase transition of the Pacific Decadal Oscillation(PDO) and Atlantic Multidecadal Oscillation(AMO) are further investigated by AGCM sensitivity experiments isolating the respective forcings.The sea ice decline in Barents-Kara Seas triggers an atmospheric wave train over the Eurasian mid-to-high latitudes with positive anomalies over the Urals, favoring the occurrence of Ural PAEs. The shift in the PDO to its negative phase triggers a wave train propagating downstream from the North Pacific. One positive anomaly lobe of the wave train is located over the Ural Mountains and increases the PAE there. The negative-to-positive transition of the AMO phase since the late-1990s causes positive 500-h Pa height anomalies south of the Ural Mountains, which promote a southward shift of Ural PAE.
文摘The elastic thickness parameter was estimated using the mobile correlation technique between the observed isostatic disturbance and the gravity disturbance calculated through direct gravimetric modeling. We computed the vertical flexure value of the crust for a specific elastic thickness using a given topographic dataset. The gravity disturbance due to the topography was determined after the calculation. A grid of values for the elastic thickness parameter was generated. Then, a moving correlation was performed between the observed gravity data(representing actual surface data) and the calculated data from the forward modeling. The optimum elastic thickness of the particular point corresponded to the highest correlation coefficient. The methodology was tested on synthetic data and showed that the synthetic depth closely matched the original depth, including the elastic thickness value. To validate the results, the described procedure was applied to a real dataset from the Barreirinhas Basin, situated in the northeastern region of Brazil. The results show that the obtained crustal depth is highly correlated with the depth from known models. Additionally, we noted that the elastic thickness behaves as expected, decreasing from the continent towards the ocean. Based on the results, this method has the potential to be employed as a direct estimate of crustal depth and elastic thickness for any region.
基金supported by the National Natural Science Foundation of China(Grant Nos.42120104001,42192563 and 42005010)the Hong Kong RGC General Research Fund 11300920.
文摘Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in eastern China over recent decades.Spatial trend analysis displays pronounced warming in inland midlatitudes and the Yangtze River Valley,with increased humidity in coastal regions.EOF results indicate intensifying dry heatwaves in northern China,while the Yangtze River Valley sees more frequent dry heatwaves.On the other hand,Indochina and regions north of 25°N also experience intensified wet heatwaves,corresponding to regional humidity increases.Composite analysis is conducted based on different situations:strong,frequent dry or wet heatwaves.Strong dry heatwaves are influenced by anticyclonic circulations over northern China,accompanied by warming SST anomalies around the coastal midlatitudes of the western North Pacific(WNP).Frequent dry heatwaves are related to strong subsidence along with a strengthened subtropical high over the WNP.Strong and frequent wet heatwaves show an intensified Okhotsk high at higher latitudes in the lower troposphere,and a negative circumglobal teleconnection wave train pattern in the upper troposphere.Decaying El Niño SST patterns are observed in two kinds of wet heatwave and frequent dry heatwave years.Risk analysis indicates that El Niño events heighten the likelihood of these heatwaves in regions most at risk.As global warming continues,adapting and implementing mitigation strategies toward extreme heatwaves becomes crucial,especially for the aforementioned regions under significant heat stress.
文摘This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).
文摘The West African Monsoon (WAM) is characterized by strong decadal and multi-decadal variability and the impacts can be catastrophic for the local populations. One of the factors put forward to explain this variability involves the role of atmospheric dynamics, linked in particular to the Saharan Heat Low (SHL). This article addresses this question by comparing the sets of preindustrial control and historical simulation data from climate models carried out in the framework of the CMIP5 project and observations data over the 20<sup>th</sup> century. Through multivariate statistical analyses, it was established that decadal modes of ocean variability and decadal variability of Saharan atmospheric dynamics significantly influence decadal variability of monsoon precipitation. These results also suggest the existence of external anthropogenic forcing, which is superimposed on the decadal natural variability inducing an intensification of the signal in the historical simulations compared to preindustrial control simulations. We have also shown that decadal rainfall variability in the Sahel, once the influence of oceanic modes has been eliminated, appears to be driven mainly by the activity of the Arabian Heat Low (AHL) in the central Sahel, and by the structure of the meridional temperature gradient over the inter-tropical Atlantic in the western Sahel.
文摘The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.
基金the National Natural Science Foundation of China(Grant Nos.51874264 and 52076200)。
文摘Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.
文摘This research introduces a challenge in integrating and cleaning the data,which is a crucial task in object matching.While the object is detected and then measured,the vibration at different light intensities may influence the durability and reliability of mechanical systems or structures and cause problems such as damage,abnormal stopping,and disaster.Recent research failed to improve the accuracy rate and the computation time in tracking an object and in the vibration measurement.To solve all these problems,this proposed research simplifies the scaling factor determination by assigning a known real-world dimension to a predetermined portion of the image.A novel white color sticker of the known dimensions marked with a color dot is pasted on the surface of an object for the best result in the template matching using the Improved Up-Sampled Cross-Correlation(UCC)algorithm.The vibration measurement is calculated using the Finite-Difference Algorithm(FDA),a machine vision systemfitted with a macro lens sensor that is capable of capturing the image at a closer range,which does not affect the quality of displacement measurement from the video frames.Thefield test was conducted on the TAFE(Tractors and Farm Equipment Limited)tractor parts,and the percentage of error was recorded between 30%and 50%at very low vibration values close to zero,whereas it was recorded between 5%and 10%error in most high-accelerations,the essential range for vibration analysis.Finally,the suggested system is more suitable for measuring the vibration of stationary machinery having low frequency ranges.The use of a macro lens enables to capture of image frames at very close-ups.A 30%to 50%error percentage has been reported when the vibration amplitude is very small.Therefore,this study is not suitable for Nano vibration analysis.
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.42130610,42075040,and 42175078)the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSQ002)+1 种基金Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)the Innovation and development project of China Meteorological Administration(Grant No.CXFZ2022J030).
文摘Extreme summer heat can have serious socioeconomic impacts in North China.Here,we explore the decadal variability of the number of extreme heat days in early-to-mid summer(June and July)and a related potential mechanism consistent with the major seasonal occurrence period of extreme heat events in North China(NCSH).Observational analyses show significant decadal variability in NCSH for 1981–2021,potentially linked to the Indo-Pacific warm pool and Northwest Pacific Ocean dipole(IPOD)in early-to-mid summer.Dynamic diagnostic analysis and the linear baroclinic model(LBM)show that the positive IPOD in early-to-mid summer can excite upward vertical wind anomalies in the South China-East China Sea region,shifting the position of the western Pacific subtropical high(WPSH)to the east or weakening the degree of its control of the South China-East China Sea region,thus generating a positive geopotential height quadrupole(EAWPQ)pattern in the East Asia-Northwest Pacific region.Subsequently,the EAWPQ can cause air compression(expansion)over North China by regulating the tropospheric thickness anomalies in North China,thus increasing(decreasing)NCSH.Finally,an empirical model that incorporates the linear trend can better simulate the decadal NCSH compared to an empirical model based solely on the IPOD index,suggesting that the decadal variability of NCSH may be a combined contribution of the decadal IPOD and external linear forcing.
基金supported by the National Natural Science Foundation of China(Grant Nos.91744311 and91544219)the National Key Research and Development Program of China(Grant No.2016YFA0600203)the National Natural Science Foundation of China(Grant No.41405138)
文摘China has been experiencing widespread air pollution due to rapid industrialization and urbanization in recent decades.The two major concerns of ambient air quality in China are particulate matter(PM)and tropospheric ozone(O3).With the implementation of air pollution prevention and control actions in the last five years,the PM pollution in China has been substantially reduced.In contrast,under the conditions of the urban air pollution complex,the elevated O3 levels in city clusters of eastern China,especially in warm seasons,have drawn increasing attention.Emissions of air pollutants and their precursors not only contribute to regional air quality,but also alter climate.Climate change in turn can change chemical processes,long-range transport,and local meteorology that influence air pollution.Compared to PM,less is known about O3 pollution and its climate effects over China.Here,we present a review of the main findings from the literature over the period 2011-18 with regard to the characteristics of O3 concentrations in China and the mechanisms that drive its interannual to decadal variations,aiming to identify robust conclusions that may guide decision-making for emissions control and to highlight critical knowledge gaps.We also review regional and global modeling studies that have investigated the impacts of tropospheric O3 on climate,as well as the projections of future tropospheric O3 owing to climate and/or emission changes.
文摘By dint of grid information from 1948 to 2007,the summer monsoon in Afro-Asian area and the precipitation in corresponding atmosphere circulation situation during the strong and weak Afro-Asian monsoon period are studied.The results suggest that the strong or weak Afro-Asian monsoon has pretty good corresponding relation with summer precipitation in Afro-Asian area.When summer monsoon weakens year after year,precipitation also decreases every year.
基金supported by the National Natural Science Foundation of China(NSFC) (Grant Nos.40906003 and 40830106)the National Basic Research Program of China(Grant No.2012CB 955603)
文摘In this study, the relationship between El Nifio-Southern Oscillation (ENSO) and winter rainfall over Southeast China (SC) is demonstrated based on instrumental and reanalysis data. The results show that ENSO and SC winter rainfall (ENSO-SC rainfall) are highly correlated and intimately coupled through an anomalous high pressure over the northwestern Pacific. In mature phase, El Nifio (La Nina) events can cause more (less) rainfall over SC in winter. Due to the persistence and spring barrier of ENSO, SC winter rainfall has potential predictability of about half a year ahead with ENSO as a predictor.
基金supported by the National Natural Science Foundation of China under the grants No.40233028 and No.40075017.
文摘Wavelet analyses are applied to the Pacific Decadal Oscillation index and North Pacific index for the period 1900-2000, which identifies two dominant interdecadal components, the bidecadal (15-25-yr) and pentadecadal (50 70-yr) modes. Joint propagating patterns of sea surface temperature (SST) and sea level pressure (SLP) anomalies in the North Pacific for the two modes are revealed by using the techniques of multi-channel singular spectrum analysis (MSSA) and linear regression analysis with the global sea surface temperature (GISST) data and the northern hemispheric SLP data for the common period 1903 1998. Significant differences in spatio-temporal structures are found between the two modes. For the bidecadal mode, SST anomalies originating from the Gulf of Alaska appear to slowly spread southwestward, inducing a reversal of early SST anomalies in the central North Pacific. Due to further westward spreading, the SST variation of the central North Pacific leads that of the Kuroshio-Oyashio Extension (KOE) region by approximately 4 to 5 years. Concomitantly, SLP anomalies spread over most parts of the North Pacific during the mature phase and then change into an NPO(North Pacific Oscillation)-like pattern during the transition phase. For the pentadecadal mode, SST anomalies develop in the southeast tropical Pacific and propagate along the North American coast to the mid-latitudes; meanwhile, SST anomalies with the same polarity in the western tropical Pacific expand northward to Kuroshio and its extension region; both merge into the central North Pacific reversing the sign of early SST anomalies there. Accompanying SLP anomalies are characterized by an NPO-like pattern during the mature phase while they are dominant over the North Pacific during the transitional phase. The bidecadal and pentadecadal modes have different propagating patterns, suggesting that the two interdecadal modes may arise from different physical mechanisms.
基金supported by the National Key R&D Program of China (Grant No.2017YFA0604201)the National Natural Science Foundation of China (Grant Nos.41576019,41606027 and 41706028)the China Postdoctoral Science Foundation (Grant No.2015M571095)
文摘Using observational data and the pre-industrial simulations of 19 models from the Coupled Model Intercomparison Project Phase 5(CMIP5), the El Ni o(EN) and La Ni a(LN) events in positive and negative Pacific Decadal Oscillation(PDO) phases are examined. In the observational data, with EN(LN) events the positive(negative) SST anomaly in the equatorial eastern Pacific is much stronger in positive(negative) PDO phases than in negative(positive) phases. Meanwhile,the models cannot reasonably reproduce this difference. Besides, the modulation of ENSO frequency asymmetry by the PDO is explored. Results show that, in the observational data, EN is 300% more(58% less) frequent than LN in positive(negative)PDO phases, which is significant at the 99% confidence level using the Monte Carlo test. Most of the CMIP5 models exhibit results that are consistent with the observational data.
基金supported by the research grant KZCX3-SW-226 of the Chinese Academy of Sciencesthe National Basic Research Program of China(973 Program, Grant No. 2006CB403600)CityU Strategic Research Grant 7002231
文摘This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both mei-yu precipitation and mei-yu duration are characterized by significant decadal variability. Their decadal components are closely correlated with a triple mode of North Atlantic SSTA in the preceding winter. Regression analysis demonstrates that the wintertime North Atlantic SSTA may impose a delayed impact on East Asia Summer Monsoon (EASM) circulation and mei-yu on the decadal timescale. The persistency of SSTA plays an important role during this course. The triple SSTA mode can persist from winter until late spring. It is suggested that the springtime SSTA may excite a stationary wave-train propagating from west Eurasia to East Asia and exert an impact on mei-yu.
基金supported by the National Natural Science Foundation of China (Grant No. 41105046)the National Basic Research Program of China (Grant No. 2010CB950403)the Chinese Academy of Sciences (Grant No. XDA05090000)
文摘This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.
文摘Interannual and decadal variations of winter snow cover over the Qinghai-Xizang Plateau (QXP) are analyzed by using monthly mean snow depth data set of 60 stations over QXP for the period of 1958 through 1992. It is found that the winter snow cover over QXP bears a pronounced quasi-biennial oscillation, and it underwent an obvious decadal transition from a poor snow cover period to a rich snow cover period in the late 1970’s during the last 40 years. It is shown that the summer rainfall in the eastern China is closely associated with the winter snow cov-er over QXP not only in the interannual variation but also in the decadal variation. A clear relationship ex-ists in the quasi-biennial oscillation between the summer rainfall in the northern part of North China and the southern China and the winter snow cover over QXP. Furthermore, the summer rainfall in the four cli-mate divisions of Qinling-Daba Mountains, the Yangtze-Huaihe River Plain, the upper and lower reaches of the Yangtze River showed a remarkable transition from drought period to rainy period in the end of 1970’s, in good correspondence with the decadal transition of the winter snow cover over QXP. Key words Snow cover over Qinghai-Xizang Plateau - Summer monsoon rainfall in China - Interannual and decadal variations This study was supported by the National Key Programme for Developing Basic Sciences (G 1998040900 Part I).