This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heav...Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heavy loss.Therefore,the problem of mean-square bounded synchronization in multi-agent systems subject to deception attacks is investigated in this paper.The control signals can be replaced with false data from controllerto-actuator channels or the controller.The success of the attack is measured through a stochastic variable.A distributed impulsive controller using a pinning strategy is redesigned,which ensures that mean-square bounded synchronization is achieved in the presence of deception attacks.Some sufficient conditions are derived,in which upper bounds of the synchronization error are given.Finally,two numerical simulations with symmetric and asymmetric network topologies are given to illustrate the theoretical results.展开更多
In this article,we study the secure control of the Markovian jumping neural networks(MJNNs)subject to deception attacks.Considering the limitation of the network bandwidth and the impact of the deception attacks,we pr...In this article,we study the secure control of the Markovian jumping neural networks(MJNNs)subject to deception attacks.Considering the limitation of the network bandwidth and the impact of the deception attacks,we propose two memory-based adaptive event-trigger mechanisms(AETMs).Different from the available event-trigger mechanisms,these two memory-based AETMs contain the historical triggered data not only in the triggering conditions,but also in the adaptive law.They can adjust the data transmission rate adaptively so as to alleviate the impact of deception attacks on the controlled system and to suppress the peak of the system response.In view of the proposed memory-based AETMs,a time-dependent Lyapunov functional is constructed to analyze the stability of the error system.Some sufficient conditions to ensure the asymptotical synchronization of master-slave MJNNs are obtained,and two easy-to-implement co-design algorithms for the feedback gain matrix and the trigger matrix are given.Finally,a numerical example is given to verify the feasibility and superiority of the two memory-based AETMs.展开更多
Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is ...Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is applied to reconstruction of residual measurements after the detection and identification scheme based on the Markov graph of the system state, which increases the resilience of state estimation strategy against deception attacks. First, the observability analysis is introduced to decide the triggering time of the measurement reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-singular value decomposition (K-SVD), which is produced adaptively according to the characteristics of the measurement data. In addition, due to the irregularity of residual measurements, a sampling matrix is designed as the measurement matrix. Finally, the simulation experiments are performed on 6-bus power system. Results show that the reconstruction of measurements is completed well by the proposed reconstruction method, and the corresponding effects are better than reconstruction scheme based on the joint dictionary and the traditional Gauss or Bernoulli random matrix respectively. Especially, when only 29% available clean measurements are left, performance of the proposed strategy is still extraordinary, which reflects generality for five kinds of recovery algorithms.展开更多
Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vu...Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.展开更多
In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of den...In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of denial-of-service attacks and deception attacks,and they are described by two groups of independent Bernoulli distributions.On this foundation,via the Lyapunov stability theory and linear matrix inequality technology,the H_(∞)/passive-based performance criteria for semi-Markov jump neural networks are obtained.Additionally,an activation function division approach for neural networks is adopted to further reduce the conservatism of the criteria.Finally,a simulation example is provided to verify the validity and feasibility of the proposed method.展开更多
Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart gri...Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart grids,smart manufacturing,sensor networks,and intelligent transportation systems.Control of the MASs are often coordinated through information interaction among agents,which is one of the most important factors affecting coordination and cooperation performance.However,unexpected physical faults and cyber attacks on a single agent may spread to other agents via information interaction very quickly,and thus could lead to severe degradation of the whole system performance and even destruction of MASs.This paper is concerned with the safety/security analysis and synthesis of MASs arising from physical faults and cyber attacks,and our goal is to present a comprehensive survey on recent results on fault estimation,detection,diagnosis and fault-tolerant control of MASs,and cyber attack detection and secure control of MASs subject to two typical cyber attacks.Finally,the paper concludes with some potential future research topics on the security issues of MASs.展开更多
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
基金supported by the National Natural Science Foundation of China(61988101,61922030,61773163)Shanghai Rising-Star Program(18QA1401400)+3 种基金the International(Regional)Cooperation and Exchange Project(61720106008)the Natural Science Foundation of Shanghai(17ZR1406800)the Fundamental Research Funds for the Central Universitiesthe 111 Project(B17017)。
文摘Cyber attacks pose severe threats on synchronization of multi-agent systems.Deception attack,as a typical type of cyber attack,can bypass the surveillance of the attack detection mechanism silently,resulting in a heavy loss.Therefore,the problem of mean-square bounded synchronization in multi-agent systems subject to deception attacks is investigated in this paper.The control signals can be replaced with false data from controllerto-actuator channels or the controller.The success of the attack is measured through a stochastic variable.A distributed impulsive controller using a pinning strategy is redesigned,which ensures that mean-square bounded synchronization is achieved in the presence of deception attacks.Some sufficient conditions are derived,in which upper bounds of the synchronization error are given.Finally,two numerical simulations with symmetric and asymmetric network topologies are given to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China (Grant Nos.61973199,62003794,and 62173214)the Shandong Provincial Natural Science Foundation (Grant Nos.ZR2020QF050 and ZR2021MF003)the Taishan Scholar Project of Shandong Province of China。
文摘In this article,we study the secure control of the Markovian jumping neural networks(MJNNs)subject to deception attacks.Considering the limitation of the network bandwidth and the impact of the deception attacks,we propose two memory-based adaptive event-trigger mechanisms(AETMs).Different from the available event-trigger mechanisms,these two memory-based AETMs contain the historical triggered data not only in the triggering conditions,but also in the adaptive law.They can adjust the data transmission rate adaptively so as to alleviate the impact of deception attacks on the controlled system and to suppress the peak of the system response.In view of the proposed memory-based AETMs,a time-dependent Lyapunov functional is constructed to analyze the stability of the error system.Some sufficient conditions to ensure the asymptotical synchronization of master-slave MJNNs are obtained,and two easy-to-implement co-design algorithms for the feedback gain matrix and the trigger matrix are given.Finally,a numerical example is given to verify the feasibility and superiority of the two memory-based AETMs.
基金This work was supported by the Natural Science Foundation of China (NSFC)-Guangdong Joint Foundation Key Project (No. U1401253), the NSFC (Nos. 61573153, 616721 74), the Foundation of Guangdong Provincial Science and Technology Projects (No. 2013B010401001 ), the Fundamental Research Funds for the Central Universities (No. 2015ZZ099), the Guangzhou Science and Technology Plan Project (No. 201510010132), the Maoming Science and Technology Plan Project (No. MM201 7000004), and the National Natural Science Foundation of Guangdong Province (No. 2016A030313510).
文摘Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is applied to reconstruction of residual measurements after the detection and identification scheme based on the Markov graph of the system state, which increases the resilience of state estimation strategy against deception attacks. First, the observability analysis is introduced to decide the triggering time of the measurement reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-singular value decomposition (K-SVD), which is produced adaptively according to the characteristics of the measurement data. In addition, due to the irregularity of residual measurements, a sampling matrix is designed as the measurement matrix. Finally, the simulation experiments are performed on 6-bus power system. Results show that the reconstruction of measurements is completed well by the proposed reconstruction method, and the corresponding effects are better than reconstruction scheme based on the joint dictionary and the traditional Gauss or Bernoulli random matrix respectively. Especially, when only 29% available clean measurements are left, performance of the proposed strategy is still extraordinary, which reflects generality for five kinds of recovery algorithms.
基金Science and Technology Innovation 2030 Program(2018AAA0101605).
文摘Industrial robots are becoming increasingly vulnerable to cyber incidents and attacks,particularly with the dawn of the Industrial Internet-of-Things(IIoT).To gain a comprehensive understanding of these cyber risks,vulnerabilities of industrial robots were analyzed empirically,using more than three million communication packets collected with testbeds of two ABB IRB120 robots and five other robots from various original equipment manufacturers(OEMs).This analysis,guided by the confidentiality-integrity-availability(CIA)triad,uncovers robot vulnerabilities in three dimensions:confidentiality,integrity,and availability.These vulnerabilities were used to design Covering Robot Manipulation via Data Deception(CORMAND2),an automated cyber-physical attack against industrial robots.CORMAND2 manipulates robot operation while deceiving the Supervisory Control and Data Acquisition(SCADA)system that the robot is operating normally by modifying the robot’s movement data and data deception.CORMAND2 and its capability of degrading the manufacturing was validated experimentally using the aforementioned seven robots from six different OEMs.CORMAND2 unveils the limitations of existing anomaly detection systems,more specifically the assumption of the authenticity of SCADA-received movement data,to which we propose mitigations for.
基金supported by the National Natural Science Foundation of China under Grant Nos.62103005,62173001,and 62273006the Natural Science Foundation of Anhui Provincial Natural Science Foundation under Grant No.2108085QF276+3 种基金the Natural Science Foundation for Distinguished Young Scholars of Higher Education Institutions of Anhui Province under Grant No.2022AH020034the Natural Science Foundation for Excellent Young Scholars of Higher Education Institutions of Anhui Province under Grant No.2022AH030049,2023AH030030,2022AH030049the Major Technologies Research and Development Special Program of Anhui Province under Grant No.202003a05020001the Key Research and Development Projects of Anhui Province under Grant No.202104a05020015。
文摘In this work,an H_(∞)/passive-based secure synchronization control problem is investigated for continuous-time semi-Markov neural networks subject to hybrid attacks,in which hybrid attacks are the combinations of denial-of-service attacks and deception attacks,and they are described by two groups of independent Bernoulli distributions.On this foundation,via the Lyapunov stability theory and linear matrix inequality technology,the H_(∞)/passive-based performance criteria for semi-Markov jump neural networks are obtained.Additionally,an activation function division approach for neural networks is adopted to further reduce the conservatism of the criteria.Finally,a simulation example is provided to verify the validity and feasibility of the proposed method.
基金partially supported by the National Natural Science Foundation of China(61873237)the Fundamental Research Funds for the Central Universities+2 种基金the Fundamental Research Funds for the Provincial Universities of Zhejiang(RF-A2019003)the Research Grants Council of the Hong Kong Special Administrative Region of China(City U/11204315)the Hong Kong Scholars Program(XJ2016030)。
文摘Multi-agent systems(MASs)are typically composed of multiple smart entities with independent sensing,communication,computing,and decision-making capabilities.Nowadays,MASs have a wide range of applications in smart grids,smart manufacturing,sensor networks,and intelligent transportation systems.Control of the MASs are often coordinated through information interaction among agents,which is one of the most important factors affecting coordination and cooperation performance.However,unexpected physical faults and cyber attacks on a single agent may spread to other agents via information interaction very quickly,and thus could lead to severe degradation of the whole system performance and even destruction of MASs.This paper is concerned with the safety/security analysis and synthesis of MASs arising from physical faults and cyber attacks,and our goal is to present a comprehensive survey on recent results on fault estimation,detection,diagnosis and fault-tolerant control of MASs,and cyber attack detection and secure control of MASs subject to two typical cyber attacks.Finally,the paper concludes with some potential future research topics on the security issues of MASs.