This paper presents the technical basis for wide area real time decimetre positioning services using multiple carrier signals transmitted by future GNSS such as modernized GPS and Compass systems. The first step is to...This paper presents the technical basis for wide area real time decimetre positioning services using multiple carrier signals transmitted by future GNSS such as modernized GPS and Compass systems. The first step is to form two ionosphere-reduced extra-widelanes (EWL) that have the minimal total noise levels in cycles, considering the effects of the ionospheric and tropospheric delays, orbital error, and phase noise terms in various observational environments. The proposed three carrier ambiguity resolution approach can determine the integer ambiguities of the selected EWL signals with geometry-free and geometry- based estimations respectively over the distances of typically hundreds of kilometres. With two ambiguity-fixed EWL signals, the kinematic positioning solutions can be achieved in decimetre level accuracy. A semi-simulation method is employed to generate three frequency Compass data to demonstrate the above expected performance for decimetre positioning services. Both theoretical and experimental results have demonstrated the overall 3D root mean square accuracy of better than 15 cm obtained through with a phase smoothing process over 120 epochs. The dominating error factor in this positioning result is the residual tropospheric biases, which would become less correlated as the baselines grow beyond hundreds of kilometres. With respect to dual-frequency based precise point positioning and wide area differential positioning solutions, a major advantage of using the third frequency signals is the convergence time being shorten from tens of minutes to a few minutes. In addition, due to the instant ambiguity resolution capability, phase breaks or cycle slips no longer affect the continuity of the solutions. This reliable decimetre positioning capability introduces a significant improvement to safety-of-life, liability-critical and professional applications.展开更多
基金financial supports from the Austrialia Cooperative Research Centre for Spatial Information (CRCSI) Project (Grant No. P1.04)the Key Laboratory of Advanced Engineering Sur-veying of SBSM (Grant No. TJES0809)
文摘This paper presents the technical basis for wide area real time decimetre positioning services using multiple carrier signals transmitted by future GNSS such as modernized GPS and Compass systems. The first step is to form two ionosphere-reduced extra-widelanes (EWL) that have the minimal total noise levels in cycles, considering the effects of the ionospheric and tropospheric delays, orbital error, and phase noise terms in various observational environments. The proposed three carrier ambiguity resolution approach can determine the integer ambiguities of the selected EWL signals with geometry-free and geometry- based estimations respectively over the distances of typically hundreds of kilometres. With two ambiguity-fixed EWL signals, the kinematic positioning solutions can be achieved in decimetre level accuracy. A semi-simulation method is employed to generate three frequency Compass data to demonstrate the above expected performance for decimetre positioning services. Both theoretical and experimental results have demonstrated the overall 3D root mean square accuracy of better than 15 cm obtained through with a phase smoothing process over 120 epochs. The dominating error factor in this positioning result is the residual tropospheric biases, which would become less correlated as the baselines grow beyond hundreds of kilometres. With respect to dual-frequency based precise point positioning and wide area differential positioning solutions, a major advantage of using the third frequency signals is the convergence time being shorten from tens of minutes to a few minutes. In addition, due to the instant ambiguity resolution capability, phase breaks or cycle slips no longer affect the continuity of the solutions. This reliable decimetre positioning capability introduces a significant improvement to safety-of-life, liability-critical and professional applications.