For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tos...For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.展开更多
The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibrat...The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions.展开更多
Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the betteri...Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the bettering of ID3 algorithm and constructa data set of the scholarship evaluation system through the analysis of the related attributes in scholarship evaluation information.And also having found some factors that plays a significant role in the growing up of the college students through analysis and re-search of moral education, intellectural education and culture&PE.展开更多
Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers base...Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC.展开更多
Due to continuous cutting tool usage,tool supervision is essential for improving the metal cutting industry.In the metal removal process tool,supervision is carried out either by an operator or online tool supervision...Due to continuous cutting tool usage,tool supervision is essential for improving the metal cutting industry.In the metal removal process tool,supervision is carried out either by an operator or online tool supervision.Tool super-vision helps to understand tool condition,dimensional accuracy,and surface superiority.For downtime in the metal cutting industry,the main reasons are tool breakage and excessive wear,so it is necessary to supervise tool which gives better tool life and enhance productivity.This paper presents different conventional and artificial intelligence techniques for tool supervision in the processing procedures that have been depicted in writing.展开更多
Powered by the Internet and the ever-increasing level of informatization, the cyberspace has become increasingly complex and its security situation has become increasingly grim, which requires new adaptive and collabo...Powered by the Internet and the ever-increasing level of informatization, the cyberspace has become increasingly complex and its security situation has become increasingly grim, which requires new adaptive and collaborative defense technologies. In this paper, we introduced an extended interactive multi-agent decision model for decentralized cyber defense. Based on the significant advantages of the cooperative multi-agent decision-making, the decentralized interactive decision model DI-MDPs and the corresponding interaction and retrieval algorithms are proposed. Then, we analyzed the interactive decision by the calculation and update processes of three matrices, the stability and evolutionary equilibrium of the proposed model are also analyzed. Finally, we evaluated the performance of the proposed algorithms based on open data sets and standard test environments, the experimental results shown that the proposed work will be more applicable in cyber defense.展开更多
Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is v...Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared.展开更多
The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a ...The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.展开更多
This work proposes a hybrid approach for solving traditional flowshop scheduling problems to reduce the makespan (total completion time). To solve scheduling problems, a combination of Decision Tree (DT) and Scatt...This work proposes a hybrid approach for solving traditional flowshop scheduling problems to reduce the makespan (total completion time). To solve scheduling problems, a combination of Decision Tree (DT) and Scatter Search (SS) algorithms are used. Initially, the DT is used to generate a seed solution which is then given input to the SS to obtain optimal / near optimal solutions of makespan. The DT used the entropy function to convert the given problem into a tree structured format / set of rules. The SS provides an extensive investigation of the search space through diversification. The advantages of both DT and SS are used to form a hybrid approach. The proposed algorithm is tested with various benchmark datasets available for flowshop scheduling. The statistical results prove that the proposed method is competent and efficient for solving flowshop problems.展开更多
Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and ...Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context. This work is dedicated to Jianer Chen, one of the strongest problem solvers in the history of parameterized algorithmics,on the occasion of his 60 th birthday.展开更多
基金The National Natural Science Foundation of China(No.61471164)the Fundamental Research Funds for the Central Universitiesthe Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX-0133)
文摘For the dense macro-femto coexistence networks scenario, a long-term-based handover(LTBH) algorithm is proposed. The handover decision algorithm is jointly determined by the angle of handover(AHO) and the time-tostay(TTS) to reduce the unnecessary handover numbers.First, the proposed AHO parameter is used to decrease the computation complexity in multiple candidate base stations(CBSs) scenario. Then, two types of TTS parameters are given for the fixed base stations and mobile base stations to make handover decisions among multiple CBSs. The simulation results show that the proposed LTBH algorithm can not only maintain the required transmission rate of users, but also effectively reduce the unnecessary numbers of handover in the dense macro-femto networks with the coexisting mobile BSs.
文摘The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions.
文摘Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the bettering of ID3 algorithm and constructa data set of the scholarship evaluation system through the analysis of the related attributes in scholarship evaluation information.And also having found some factors that plays a significant role in the growing up of the college students through analysis and re-search of moral education, intellectural education and culture&PE.
文摘Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC.
文摘Due to continuous cutting tool usage,tool supervision is essential for improving the metal cutting industry.In the metal removal process tool,supervision is carried out either by an operator or online tool supervision.Tool super-vision helps to understand tool condition,dimensional accuracy,and surface superiority.For downtime in the metal cutting industry,the main reasons are tool breakage and excessive wear,so it is necessary to supervise tool which gives better tool life and enhance productivity.This paper presents different conventional and artificial intelligence techniques for tool supervision in the processing procedures that have been depicted in writing.
基金financially supported by the National Natural Science Foundation of China (No. 62106060)in part by the Beijing Natural Science Foundation (No. 4214061)
文摘Powered by the Internet and the ever-increasing level of informatization, the cyberspace has become increasingly complex and its security situation has become increasingly grim, which requires new adaptive and collaborative defense technologies. In this paper, we introduced an extended interactive multi-agent decision model for decentralized cyber defense. Based on the significant advantages of the cooperative multi-agent decision-making, the decentralized interactive decision model DI-MDPs and the corresponding interaction and retrieval algorithms are proposed. Then, we analyzed the interactive decision by the calculation and update processes of three matrices, the stability and evolutionary equilibrium of the proposed model are also analyzed. Finally, we evaluated the performance of the proposed algorithms based on open data sets and standard test environments, the experimental results shown that the proposed work will be more applicable in cyber defense.
文摘Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared.
基金Supported by the National Natural Science Foundation of China(6100201461101129+1 种基金6122700161072050)
文摘The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.
文摘This work proposes a hybrid approach for solving traditional flowshop scheduling problems to reduce the makespan (total completion time). To solve scheduling problems, a combination of Decision Tree (DT) and Scatter Search (SS) algorithms are used. Initially, the DT is used to generate a seed solution which is then given input to the SS to obtain optimal / near optimal solutions of makespan. The DT used the entropy function to convert the given problem into a tree structured format / set of rules. The SS provides an extensive investigation of the search space through diversification. The advantages of both DT and SS are used to form a hybrid approach. The proposed algorithm is tested with various benchmark datasets available for flowshop scheduling. The statistical results prove that the proposed method is competent and efficient for solving flowshop problems.
基金supported by the Deutsche Forschungsgemeinschaft, project PAWS (NI 369/10)supported by the Studienstiftung des Deutschen Volkes+2 种基金supported by DFG "Cluster of Excellence Multimodal Computing and Interaction"supported by DIAMANT (a mathematics cluster of the Netherlands Organization for Scientific Research NWO)the Alexander von Humboldt Foundation, Bonn, Germany
文摘Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context. This work is dedicated to Jianer Chen, one of the strongest problem solvers in the history of parameterized algorithmics,on the occasion of his 60 th birthday.