The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera...The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.展开更多
This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the lim...This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.展开更多
The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured ...The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured and analysed, to have hierarchical command inputs that are predicated on order statistics distributions. The results give optimal distributions.展开更多
The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability ...The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.展开更多
Curriculum design is an aspect of education profession which focuses on developing curricula for students.Educators will take many factors in consideration when design a curriculum.In practical teaching,teacher as dec...Curriculum design is an aspect of education profession which focuses on developing curricula for students.Educators will take many factors in consideration when design a curriculum.In practical teaching,teacher as decision makers to design an appropriate curricu lum and teaching activities play an important part in the whole teaching and learning.Many classroom teachers are working with students of different levels of ability,and they need to be able to adjust the curriculum to keep all of the students engaged and learning.It may also be necessary to change the pace of a curriculum to deal with problems as they arise.The essay analyse five parts in designing the curriculum as a teacher decision maker and get a conclusion according to the whole analysis course.展开更多
Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alter...Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alternatives is provided by participants,it should be verified whether there exist compromise weights that can support all the preference relations.The different compromise weight vectors may differ for the ranking of the alternatives.In the case that compromise weights exist,the method is proposed to find out all the compromise weight vectors in order to rank the alternatives.Based on the new feasible domain of attribute weights determined by all the compromise weight vectors and the incomplete information on value scores of consequences,dominance relations between alternatives are checked by a nonlinear goal programming model which can be transformed into a linear one by adopting a transformation.The checked dominance relations uniformly hold for all compromise weight vectors and the incomplete information on value scores of consequences.A final ranking of the alternatives can be obtained by aggregating these dominance relations.展开更多
With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental qua...With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.展开更多
Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision makin...Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision making, has been put forward by means of the sequence root method for analysis of hierarchical process (AHP). Using this method an example which is to define the index weigbt on multi-objective decision making in thc scheme optimization of mine design has been given.展开更多
This paper takes the evaluation of overall economic benefit by an example and proposes a simple additive weighting method for time-series multiindices decision making. The method can automatically determine the weight...This paper takes the evaluation of overall economic benefit by an example and proposes a simple additive weighting method for time-series multiindices decision making. The method can automatically determine the weight coefficients among the multiindices and the years respectively and it also can obtain the objective evaluation results and conclusions.展开更多
A hybrid control system is composed of three boxes which are analogous box, digital time box and decision maker box. A hierarchical structure of decision maker in hybrid control systems is presented in this paper, whi...A hybrid control system is composed of three boxes which are analogous box, digital time box and decision maker box. A hierarchical structure of decision maker in hybrid control systems is presented in this paper, which is that decision maker consists of two components, i.e., policy decision and coordination. Policy decision can design coordination and digital time box. And policy decision consists of two parts, i.e., steady policy decision and transient policy decision. In general,steady policy decision corresponds to steady requirements and transient policy decision corresponds to transient requirements in systems. A chemical concentration control system severs an illustrative example to show the features of the hierarchical decision maker.展开更多
This paper introduces the cost-sensitive feature weighting strategy and its application in intrusion detection. Cost factors and cost matrix are proposed to demonstrate the misclassification cost for IDS. How to get t...This paper introduces the cost-sensitive feature weighting strategy and its application in intrusion detection. Cost factors and cost matrix are proposed to demonstrate the misclassification cost for IDS. How to get the whole minimal risk, is mainly discussed in this paper in detail. From experiments, it shows that although decision cost based weight learning exists somewhat attack misclassification, it can achieve relatively low misclassification costs on the basis of keeping relatively high rate of recognition precision. Key words decision cost - feature weighting - intrusion detection CLC number TP 393. 08 Foundation item: Supported by the National Natural Science Foundation Key Research Plan of China (90104030) and “20 Century Education Development Plan”Biography: QIAN Quan(1972-), male, Ph. D. research direction: computer network, network security and artificial intelligence展开更多
[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among a...[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.展开更多
The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score fun...The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.展开更多
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple...A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.展开更多
In recent years, advanced magnetic resonance imaging(MRI) techniques, such as magnetic resonance spec-troscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in ord...In recent years, advanced magnetic resonance imaging(MRI) techniques, such as magnetic resonance spec-troscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in order to resolve demanding diagnostic prob-lems such as brain tumor characterization and grading, as these techniques offer a more detailed and non-invasive evaluation of the area under study. In the last decade a great effort has been made to import and utilize intelligent systems in the so-called clinical deci-sion support systems(CDSS) for automatic processing, classification, evaluation and representation of MRI data in order for advanced MRI techniques to become a part of the clinical routine, since the amount of data from the aforementioned techniques has gradually inticle is two-fold. The first is to review and evaluate the progress that has been made towards the utilization of CDSS based on data from advanced MRI techniques. The second is to analyze and propose the future work that has to be done, based on the existing problems and challenges, especially taking into account the new imaging techniques and parameters that can be intro-duced into intelligent systems to significantly improve their diagnostic specificity and clinical application.展开更多
A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguist...A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguistic preference relations. First, double hesitant linguistic elements are defined as representing the uncertain assessment information in the process of group decision making accurately and comprehensively, and the double hesitant linguistic weighted averaging operator is developed based on the defined operational laws for double hesitant linguistic elements. Then, double hesitant linguistic preference relations are defined and a means to objectively determine the weights of decision organizations is put forward using the standard deviation of scores of preferences provided by the individual decision organization for altematives. Finally the correlation coefficient between the scores of preferences and the scores of preferences are provided by the other decision organizations. Accordingly, a group decision method based on double hesitant linguistic preference relations is proposed, and a practical example of the Jiudianxia reservoir operation alternative selection is used to illustrate the practicability and validity of the method. Finally, the proposed method is compared with the existing methods. Comparative results show that the proposed method can deal with the double hesitant linguistic preference information directly, does not need any information transformation, and can thus reduce the loss of original decision information.展开更多
Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs...Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs to indicate their preferences with uncertain weights. To begin with, a model to derive weight vectors of alternatives from IFPRs based on multiplicative consistency is presented. Specifically, for any IFPR,by minimizing its absolute deviation from the corresponding consistent IFPR, the weight vectors are generated. Secondly,a method to determine relative weights of DMs depending on preference information is developed. After that we prioritize alternatives based on the obtained weights considering the risk preference of DMs. Finally, this approach is applied to the problem of technical risks assessment of armored equipment to illustrate the applicability and superiority of the proposed method.展开更多
To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation...To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.展开更多
A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many me...A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many measures and metrics. For each of these measures and metric, the output in ORA additionally provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning best methods to disrupt or deceive a given dark network. In the Noordin Dark network, different nodes were identified as key nodes based upon the metric used. Our goal in this paper is to use methodologies to identify the key players or nodes in a Dark Network in a similar manner as we previously proposed in social networks. We apply two multi-attribute decision making methods, a hybrid AHP & TOPSIS and an average weighted ranks scheme, to analyze these outputs to find the most influential nodes as a function of the decision makers’ inputs. We compare these methods by illustration using the Noordin Dark Network with seventy-nine nodes. We discuss sensitivity analysis that is applied to the criteria weights in order to measure the change in the ranking of the nodes.展开更多
基金supported in part by the Central Government Guides Local Science and TechnologyDevelopment Funds(Grant No.YDZJSX2021A038)in part by theNational Natural Science Foundation of China under(Grant No.61806138)in part by the China University Industry-University-Research Collaborative Innovation Fund(Future Network Innovation Research and Application Project)(Grant 2021FNA04014).
文摘The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage.
文摘This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.
文摘The spectral analysis of simulated N-team of interacting decision makers with bounded rationality constraints of Oladejo, which assumes triangular probability density function of command inputs is hereby restructured and analysed, to have hierarchical command inputs that are predicated on order statistics distributions. The results give optimal distributions.
文摘The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature.
文摘Curriculum design is an aspect of education profession which focuses on developing curricula for students.Educators will take many factors in consideration when design a curriculum.In practical teaching,teacher as decision makers to design an appropriate curricu lum and teaching activities play an important part in the whole teaching and learning.Many classroom teachers are working with students of different levels of ability,and they need to be able to adjust the curriculum to keep all of the students engaged and learning.It may also be necessary to change the pace of a curriculum to deal with problems as they arise.The essay analyse five parts in designing the curriculum as a teacher decision maker and get a conclusion according to the whole analysis course.
基金supported by the Humanities and Social Sciences Foundation of Ministry of Education of China(09YJC630229)Scientific Research Foundation of Guangxi University for Nationalities for Talent Introduction(200702YZ01)Science and Technology Project of State Ethnic Affairs Commission(09GX03)
文摘Multi-attribute group decision-making problems are considered where information on both attribute weights and value scores of consequences is incomplete.In group decision analysis,if preference information about alternatives is provided by participants,it should be verified whether there exist compromise weights that can support all the preference relations.The different compromise weight vectors may differ for the ranking of the alternatives.In the case that compromise weights exist,the method is proposed to find out all the compromise weight vectors in order to rank the alternatives.Based on the new feasible domain of attribute weights determined by all the compromise weight vectors and the incomplete information on value scores of consequences,dominance relations between alternatives are checked by a nonlinear goal programming model which can be transformed into a linear one by adopting a transformation.The checked dominance relations uniformly hold for all compromise weight vectors and the incomplete information on value scores of consequences.A final ranking of the alternatives can be obtained by aggregating these dominance relations.
基金Shanghai Leading Academic Discipline Project (T0502)Shanghai Municipal Educational Commission Project (05EZ32).
文摘With the fast growth of Chinese economic, more and more capital will be invested in environmental projects. How to select the environmental investment projects (alternatives) for obtaining the best environmental quality and economic benefits is an important problem for the decision makers. The purpose of this paper is to develop a decision-making model to rank a finite number of alternatives with several and sometimes conflicting criteria. A model for ranking the projects of municipal sewage treatment plants is proposed by using exports' information and the data of the real projects. And, the ranking result is given based on the PROMETHEE method. Furthermore, by means of the concept of the weight stability intervals (WSI), the sensitivity of the ranking results to the size of criteria values and the change of weights value of criteria are discussed. The result shows that some criteria, such as “proportion of benefit to project cost”, will influence the ranking result of alternatives very strong while others not. The influence are not only from the value of criterion but also from the changing the weight of criterion. So, some criteria such as “proportion of benefit to project cost” are key critera for ranking the projects. Decision makers must be cautious to them.
文摘Based on fuzzy characteristic of dicision-making thought, matrix of priority relation has been introduced and blurrized. A kind of fuzzy method, which is to determine the index weight on multi-objective decision making, has been put forward by means of the sequence root method for analysis of hierarchical process (AHP). Using this method an example which is to define the index weigbt on multi-objective decision making in thc scheme optimization of mine design has been given.
文摘This paper takes the evaluation of overall economic benefit by an example and proposes a simple additive weighting method for time-series multiindices decision making. The method can automatically determine the weight coefficients among the multiindices and the years respectively and it also can obtain the objective evaluation results and conclusions.
文摘A hybrid control system is composed of three boxes which are analogous box, digital time box and decision maker box. A hierarchical structure of decision maker in hybrid control systems is presented in this paper, which is that decision maker consists of two components, i.e., policy decision and coordination. Policy decision can design coordination and digital time box. And policy decision consists of two parts, i.e., steady policy decision and transient policy decision. In general,steady policy decision corresponds to steady requirements and transient policy decision corresponds to transient requirements in systems. A chemical concentration control system severs an illustrative example to show the features of the hierarchical decision maker.
文摘This paper introduces the cost-sensitive feature weighting strategy and its application in intrusion detection. Cost factors and cost matrix are proposed to demonstrate the misclassification cost for IDS. How to get the whole minimal risk, is mainly discussed in this paper in detail. From experiments, it shows that although decision cost based weight learning exists somewhat attack misclassification, it can achieve relatively low misclassification costs on the basis of keeping relatively high rate of recognition precision. Key words decision cost - feature weighting - intrusion detection CLC number TP 393. 08 Foundation item: Supported by the National Natural Science Foundation Key Research Plan of China (90104030) and “20 Century Education Development Plan”Biography: QIAN Quan(1972-), male, Ph. D. research direction: computer network, network security and artificial intelligence
基金Supported by the Science Research and Development Project of Nanning City(201002030B)~~
文摘[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.
基金supported by the National Science Fund for Distinguished Young Scholars of China(70625005).
文摘The class of multiple attribute decision making (MADM) problems is studied, where the attribute values are intuitionistic fuzzy numbers, and the information about attribute weights is completely unknown. A score function is first used to calculate the score of each attribute value and a score matrix is constructed, and then it is transformed into a normalized score matrix. Based on the normalized score matrix, an entropy-based procedure is proposed to derive attribute weights. Furthermore, the additive weighted averaging operator is utilized to fuse all the normalized scores into the overall scores of alternatives, by which the ranking of all the given alternatives is obtained. This paper is concluded by extending the above results to interval-valued intuitionistic fuzzy set theory, and an illustrative example is also provided.
基金supported by the National Aerospace Science Foundation of China(20138053038)the Graduate Starting Seed Fund of Northwestern Polytechnical University(Z2015111)
文摘A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload.
文摘In recent years, advanced magnetic resonance imaging(MRI) techniques, such as magnetic resonance spec-troscopy, diffusion weighted imaging, diffusion tensor imaging and perfusion weighted imaging have been used in order to resolve demanding diagnostic prob-lems such as brain tumor characterization and grading, as these techniques offer a more detailed and non-invasive evaluation of the area under study. In the last decade a great effort has been made to import and utilize intelligent systems in the so-called clinical deci-sion support systems(CDSS) for automatic processing, classification, evaluation and representation of MRI data in order for advanced MRI techniques to become a part of the clinical routine, since the amount of data from the aforementioned techniques has gradually inticle is two-fold. The first is to review and evaluate the progress that has been made towards the utilization of CDSS based on data from advanced MRI techniques. The second is to analyze and propose the future work that has to be done, based on the existing problems and challenges, especially taking into account the new imaging techniques and parameters that can be intro-duced into intelligent systems to significantly improve their diagnostic specificity and clinical application.
基金The National Natural Science Foundation of China(No.61273209,71571123)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1527)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX_0207)
文摘A simple decision method is proposed to solve the group decision making problems in which the weights of decision organizations are unknown and the preferences for alternatives are provided by double hesitant linguistic preference relations. First, double hesitant linguistic elements are defined as representing the uncertain assessment information in the process of group decision making accurately and comprehensively, and the double hesitant linguistic weighted averaging operator is developed based on the defined operational laws for double hesitant linguistic elements. Then, double hesitant linguistic preference relations are defined and a means to objectively determine the weights of decision organizations is put forward using the standard deviation of scores of preferences provided by the individual decision organization for altematives. Finally the correlation coefficient between the scores of preferences and the scores of preferences are provided by the other decision organizations. Accordingly, a group decision method based on double hesitant linguistic preference relations is proposed, and a practical example of the Jiudianxia reservoir operation alternative selection is used to illustrate the practicability and validity of the method. Finally, the proposed method is compared with the existing methods. Comparative results show that the proposed method can deal with the double hesitant linguistic preference information directly, does not need any information transformation, and can thus reduce the loss of original decision information.
基金partly supported by the National Natural Science Foundation of China(71371053)the Social Science Foundation of Fujian Province(FJ2015C111)
文摘Intuitionistic fuzzy preference relation(IFPR) is a suitable technique to express fuzzy preference information by decision makers(DMs). This paper aims to provide a group decision making method where DMs use the IFPRs to indicate their preferences with uncertain weights. To begin with, a model to derive weight vectors of alternatives from IFPRs based on multiplicative consistency is presented. Specifically, for any IFPR,by minimizing its absolute deviation from the corresponding consistent IFPR, the weight vectors are generated. Secondly,a method to determine relative weights of DMs depending on preference information is developed. After that we prioritize alternatives based on the obtained weights considering the risk preference of DMs. Finally, this approach is applied to the problem of technical risks assessment of armored equipment to illustrate the applicability and superiority of the proposed method.
基金supported by the Research Innovation Project of Shanghai Education Committee (08YS19)the Excellent Young Teacher Project of Shanghai University
文摘To solve the uncertain multi-attribute group decision-making of unknown attribute weights,three optimal models are built to decide the corresponding ideal solution weights,standard deviation weights and mean deviation weights.The comprehensive attribute weights are gotten through the product of the above three kinds of weights.And each decision maker's weighted decision matrices are also received by using the integrated attribute weights.The closeness degrees are also gotten by use of technique for order preference by similarity to ideal solution(TOPSIS) through dealing with the weighted decision matrices.At the same time the group decision matrix and weighted group decision matrix are gotten by using each decision-maker's closeness degree to every project.Then the vertical TOPSIS method is used to calculate the closeness degree of each project.So these projects can be ranked according to their values of the closeness degree.The process of the method is also given step by step.Finally,a numerical example demonstrates the feasibility and effectiveness of the approach.
文摘A Dark Network is a network that cannot be accessed through tradition means. Once uncovered, to any degree, dark network analysis can be accomplished using the SNA software. The output of SNA software includes many measures and metrics. For each of these measures and metric, the output in ORA additionally provides the ability to obtain a rank ordering of the nodes in terms of these measures. We might use this information in decision making concerning best methods to disrupt or deceive a given dark network. In the Noordin Dark network, different nodes were identified as key nodes based upon the metric used. Our goal in this paper is to use methodologies to identify the key players or nodes in a Dark Network in a similar manner as we previously proposed in social networks. We apply two multi-attribute decision making methods, a hybrid AHP & TOPSIS and an average weighted ranks scheme, to analyze these outputs to find the most influential nodes as a function of the decision makers’ inputs. We compare these methods by illustration using the Noordin Dark Network with seventy-nine nodes. We discuss sensitivity analysis that is applied to the criteria weights in order to measure the change in the ranking of the nodes.