The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transfor...The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transformations in information systems. In set-valued ordered decision systems, when changes occur in the attribute value domain, such as adding conditional values, it may result in changes in the preference relation between objects, indirectly leading to changes in approximations. In this paper, we effectively addressed the issue of updating approximations that arose from adding conditional values in set-valued ordered decision systems. Firstly, we classified the research objects into two categories: objects with changes in conditional values and objects without changes, and then conducted theoretical studies on updating approximations for these two categories, presenting approximation update theories for adding conditional values. Subsequently, we presented incremental algorithms corresponding to approximation update theories. We demonstrated the feasibility of the proposed incremental update method with numerical examples and showed that our incremental algorithm outperformed the static algorithm. Ultimately, by comparing experimental results on different datasets, it is evident that the incremental algorithm efficiently reduced processing time. In conclusion, this study offered a promising strategy to address the challenges of set-valued ordered decision systems in dynamic environments.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the sema...In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the semantic relation of attribute values, interval and set-valued information systems can be classified into two categories: disjunctive (Type 1) and conjunctive (Type 2) systems. In this paper, we mainly focus on semantic interpretation of Type 1. Then, we define a new fuzzy preference relation and construct a fuzzy rough set model for interval and set-valued information systems. Moreover, based on the new fuzzy preference relation, the concepts of the significance measure of condition attributes and the relative significance measure of condition attributes are given in interval and set-valued decision information systems by the introduction of fuzzy positive region and the dependency degree. And on this basis, a heuristic algorithm for calculating fuzzy positive region reduction in interval and set-valued decision information systems is given. Finally, we give an illustrative example to substantiate the theoretical arguments. The results will help us to gain much more insights into the meaning of fuzzy rough set theory. Furthermore, it has provided a new perspective to study the attribute reduction problem in decision systems.展开更多
For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many ...For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.展开更多
1 Introduction A discrete dynamical system can be expressed as xn+1 ?f(xn), n = 0,1,2,... where X is a metric space and f : X →X is a continuous map. The study of it tells us how the points in the base space X moved....1 Introduction A discrete dynamical system can be expressed as xn+1 ?f(xn), n = 0,1,2,... where X is a metric space and f : X →X is a continuous map. The study of it tells us how the points in the base space X moved. Nevertheless, this is not enough for the researches of biological species, demography, numerical simulation and attractors (see [1], [2]). It is necessary to know how the subsets of X moved. In this direction, we consider the set-valued discrete system associated to f, An+1 = (f|-)(An), n = 0,1,2,... where (f|-) is the natural extension of f to K(X) (the class of all compact subsets of X).展开更多
Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because th...Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.展开更多
This paper is concerned with the sensitivity of set-valued discrete systems. Firstly, this paper obtained the equivalence between <img src="Edit_7024f70b-0568-4ca8-a554-c0d05abc0df0.bmp" alt="" ...This paper is concerned with the sensitivity of set-valued discrete systems. Firstly, this paper obtained the equivalence between <img src="Edit_7024f70b-0568-4ca8-a554-c0d05abc0df0.bmp" alt="" />or <img src="Edit_95636a59-7d5d-4b6c-8bd5-f699dd9208df.bmp" alt="" /> and the product system <img src="Edit_c714caaf-0ed9-46bc-b3e1-b0223474a8f5.bmp" alt="" /> in sensitivity, infinite sensitivity, <em>F</em>-sensitivity, (<em>F</em><sub>1</sub>, <em>F</em><sub>2</sub>)-sensitivity. Then, the relation between (<em>X</em>, <em>f</em><sub>1,∞</sub>) or (<em>Y</em>, <em>g</em><sub>1,∞</sub>) and <img src="Edit_55b4ce47-89f3-4476-a8a8-4d4db5a4e8eb.bmp" alt="" /> in ergodic sensitivity is obtained. Where <img src="Edit_a99604c4-2f72-4e75-a998-8057b8790e03.bmp" alt="" /> is the set-valued dynamical system induced by a non-autonomous discrete dynamical system (<em>X</em>, <em>f</em><sub>1,∞</sub>).展开更多
A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classe...A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.展开更多
This paper focuses on fast algorithm for computing the assignment reduct in inconsistent incomplete decision systems. It is quite inconvenient to judge the assignment reduct directly ac-cording to its definition. We p...This paper focuses on fast algorithm for computing the assignment reduct in inconsistent incomplete decision systems. It is quite inconvenient to judge the assignment reduct directly ac-cording to its definition. We propose the judgment theorem for the assignment reduct in the inconsistent incomplete decision system, which greatly simplifies judging this type reduct. On such basis, we derive a novel attribute significance measure and construct the fast assignment reduction algorithm (F-ARA), intended for com-puting the assignment reduct in inconsistent incomplete decision systems. Final y, we make a comparison between F-ARA and the discernibility matrix-based method by experiments on 13 Univer-sity of California at Irvine (UCI) datasets, and the experimental results prove that F-ARA is efficient and feasible.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes...This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes in decision systems and then a heuristic algorithm of attribute reduction is formulated.Moreover,the time complexity of the algorithm is analyzed and it is proved to be complete.Some numerical experiments are also conducted to access the performance of the presented algorithm and the results demonstrate that it is not only effective but also efficient.展开更多
A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator tech...A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator technique of H-η-monotone operators, a new iterative algorithm for finding approximate solutions to SSMQVLI is proposed. It is shown that the iterative sequences generated by the algorithm converge strongly to the exact solution of SSMQVLI under appropriate assumptions. These obtained new results have extended and improved previous results.展开更多
Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgm...Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..展开更多
In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroi...In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.展开更多
Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) mode...Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) model can be built to analyze the noise information and forecast the trend of the catastrophe then to give the method or policy to defend the disease. The model system is composed of four subsystems: the noise analysis subsystem, forecast and simulation subsystem, diagnosis subsystem and second recovery subsystem. They are discussed briefly in this paper.This model can be used not only for SARS but also for other paroxysmal accidences.展开更多
A set game, in which the worth of a coalition is expressed by a set instead of a real number, is a new type of cooperative game. A F-restricted set game is a set game restricted by partition system. The main theorems ...A set game, in which the worth of a coalition is expressed by a set instead of a real number, is a new type of cooperative game. A F-restricted set game is a set game restricted by partition system. The main theorems show the structures of IM-value,OIM-value,SCM-value and ICM-value respectively,and the equivalency of IM value and the OIM-value for monotonic set games restricted by partition system as well.展开更多
The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming v...The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.展开更多
文摘The integration of set-valued ordered rough set models and incremental learning signify a progressive advancement of conventional rough set theory, with the objective of tackling the heterogeneity and ongoing transformations in information systems. In set-valued ordered decision systems, when changes occur in the attribute value domain, such as adding conditional values, it may result in changes in the preference relation between objects, indirectly leading to changes in approximations. In this paper, we effectively addressed the issue of updating approximations that arose from adding conditional values in set-valued ordered decision systems. Firstly, we classified the research objects into two categories: objects with changes in conditional values and objects without changes, and then conducted theoretical studies on updating approximations for these two categories, presenting approximation update theories for adding conditional values. Subsequently, we presented incremental algorithms corresponding to approximation update theories. We demonstrated the feasibility of the proposed incremental update method with numerical examples and showed that our incremental algorithm outperformed the static algorithm. Ultimately, by comparing experimental results on different datasets, it is evident that the incremental algorithm efficiently reduced processing time. In conclusion, this study offered a promising strategy to address the challenges of set-valued ordered decision systems in dynamic environments.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
文摘In many practical situation, some of the attribute values for an object may be interval and set-valued. This paper introduces the interval and set-valued information systems and decision systems. According to the semantic relation of attribute values, interval and set-valued information systems can be classified into two categories: disjunctive (Type 1) and conjunctive (Type 2) systems. In this paper, we mainly focus on semantic interpretation of Type 1. Then, we define a new fuzzy preference relation and construct a fuzzy rough set model for interval and set-valued information systems. Moreover, based on the new fuzzy preference relation, the concepts of the significance measure of condition attributes and the relative significance measure of condition attributes are given in interval and set-valued decision information systems by the introduction of fuzzy positive region and the dependency degree. And on this basis, a heuristic algorithm for calculating fuzzy positive region reduction in interval and set-valued decision information systems is given. Finally, we give an illustrative example to substantiate the theoretical arguments. The results will help us to gain much more insights into the meaning of fuzzy rough set theory. Furthermore, it has provided a new perspective to study the attribute reduction problem in decision systems.
文摘For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.
文摘1 Introduction A discrete dynamical system can be expressed as xn+1 ?f(xn), n = 0,1,2,... where X is a metric space and f : X →X is a continuous map. The study of it tells us how the points in the base space X moved. Nevertheless, this is not enough for the researches of biological species, demography, numerical simulation and attractors (see [1], [2]). It is necessary to know how the subsets of X moved. In this direction, we consider the set-valued discrete system associated to f, An+1 = (f|-)(An), n = 0,1,2,... where (f|-) is the natural extension of f to K(X) (the class of all compact subsets of X).
基金National Natural Science Foundation of China(No.61164009)the Science and Technology Research Project,Department of Education of Jiangxi Province,China(No.GJJ14420)Natural Science Foundation of Jiangxi Province,China(No.20132BAB206026)
文摘Importance analysis quantifies the critical degree of individual component. Compared with the traditional binary state system,importance analysis of the multi-state system is more aligned with the practice. Because the multi-valued decision diagram( MDD) can reflect the relationship between the components and the system state bilaterally, it was introduced into the reliability calculation of the multi-state system( MSS). The building method,simplified criteria,and path search and probability algorithm of MSS structure function MDD were given,and the reliability of the system was calculated. The computing methods of importance based on MDD and direct partial logic derivatives( DPLD) were presented. The diesel engine fuel supply system was taken as an example to illustrate the proposed method. The results show that not only the probability of the system in each state can be easily obtained,but also the influence degree of each component and its state on the system reliability can be obtained,which is conducive to the condition monitoring and structure optimization of the system.
文摘This paper is concerned with the sensitivity of set-valued discrete systems. Firstly, this paper obtained the equivalence between <img src="Edit_7024f70b-0568-4ca8-a554-c0d05abc0df0.bmp" alt="" />or <img src="Edit_95636a59-7d5d-4b6c-8bd5-f699dd9208df.bmp" alt="" /> and the product system <img src="Edit_c714caaf-0ed9-46bc-b3e1-b0223474a8f5.bmp" alt="" /> in sensitivity, infinite sensitivity, <em>F</em>-sensitivity, (<em>F</em><sub>1</sub>, <em>F</em><sub>2</sub>)-sensitivity. Then, the relation between (<em>X</em>, <em>f</em><sub>1,∞</sub>) or (<em>Y</em>, <em>g</em><sub>1,∞</sub>) and <img src="Edit_55b4ce47-89f3-4476-a8a8-4d4db5a4e8eb.bmp" alt="" /> in ergodic sensitivity is obtained. Where <img src="Edit_a99604c4-2f72-4e75-a998-8057b8790e03.bmp" alt="" /> is the set-valued dynamical system induced by a non-autonomous discrete dynamical system (<em>X</em>, <em>f</em><sub>1,∞</sub>).
基金supported by the National Natural Science Foundation of China (61070241)the Natural Science Foundation of Shandong Province (ZR2010FM035)Science Research Foundation of University of Jinan (XKY0808)
文摘A new approach to knowledge acquisition in incomplete information system with fuzzy decisions is proposed. In such incomplete information system, the universe of discourse is classified by the maximal tolerance classes, and fuzzy approximations are defined based on them. Three types of relative reducts of maximal tolerance classes are then proposed, and three types of fuzzy decision rules based on the proposed attribute description are defined. The judgment theorems and approximation discernibility functions with respect to them are presented to compute the relative reduct by using Boolean reasoning techniques, from which we can derive optimal fuzzy decision rules from the systems. At last, three types of relative reducts of the system and their computing methods are given.
基金supported by the National Natural Science Foundation of China(61363047)the Jiangxi Education Department(GJJ13760)the Science and Technology Support Foundation of Jiangxi Province(20111BBE50008)
文摘This paper focuses on fast algorithm for computing the assignment reduct in inconsistent incomplete decision systems. It is quite inconvenient to judge the assignment reduct directly ac-cording to its definition. We propose the judgment theorem for the assignment reduct in the inconsistent incomplete decision system, which greatly simplifies judging this type reduct. On such basis, we derive a novel attribute significance measure and construct the fast assignment reduction algorithm (F-ARA), intended for com-puting the assignment reduct in inconsistent incomplete decision systems. Final y, we make a comparison between F-ARA and the discernibility matrix-based method by experiments on 13 Univer-sity of California at Irvine (UCI) datasets, and the experimental results prove that F-ARA is efficient and feasible.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
基金supported by grants from the National Natural Science Foundation of China(No.70861001)the Natural Science Foundation of Hainan Province in China(No.109005).
文摘This paper proposes,from the viewpoint of relation matrix,a new algorithm of attribute reduction for decision systems.Two new and relative reasonable indices are first defined to measure significance of the attributes in decision systems and then a heuristic algorithm of attribute reduction is formulated.Moreover,the time complexity of the algorithm is analyzed and it is proved to be complete.Some numerical experiments are also conducted to access the performance of the presented algorithm and the results demonstrate that it is not only effective but also efficient.
基金Project supported by the Natural Science Foundation of Education Department of Sichuan Province ofChina (No. 07ZA092)the Sichuan Province Leading Academic Discipline Project (No. SZD0406)
文摘A new system of the set-valued mixed quasi-variational-like inclusions (SSMQVLI) involving H-η-monotone operators is studied in general Banach spaces without uniform smoothness. By using the resolvent operator technique of H-η-monotone operators, a new iterative algorithm for finding approximate solutions to SSMQVLI is proposed. It is shown that the iterative sequences generated by the algorithm converge strongly to the exact solution of SSMQVLI under appropriate assumptions. These obtained new results have extended and improved previous results.
文摘Attribute reduction is one of the most important problems in rough set theory. This paper introduces the concept of lower approximation reduction in ordered information systems with fuzzy decision. Moreover, the judgment theorem and discernable matrix are obtained, in which case an approach to attribute reduction in ordered information system with fuzzy decision is constructed. As an application of lower approximation reduction, some examples are applied to examine the validity of works obtained in our works..
文摘In the era of advanced machine learning techniques,the development of accurate predictive models for complex medical conditions,such as thyroid cancer,has shown remarkable progress.Accurate predictivemodels for thyroid cancer enhance early detection,improve resource allocation,and reduce overtreatment.However,the widespread adoption of these models in clinical practice demands predictive performance along with interpretability and transparency.This paper proposes a novel association-rule based feature-integratedmachine learning model which shows better classification and prediction accuracy than present state-of-the-artmodels.Our study also focuses on the application of SHapley Additive exPlanations(SHAP)values as a powerful tool for explaining thyroid cancer prediction models.In the proposed method,the association-rule based feature integration framework identifies frequently occurring attribute combinations in the dataset.The original dataset is used in trainingmachine learning models,and further used in generating SHAP values fromthesemodels.In the next phase,the dataset is integrated with the dominant feature sets identified through association-rule based analysis.This new integrated dataset is used in re-training the machine learning models.The new SHAP values generated from these models help in validating the contributions of feature sets in predicting malignancy.The conventional machine learning models lack interpretability,which can hinder their integration into clinical decision-making systems.In this study,the SHAP values are introduced along with association-rule based feature integration as a comprehensive framework for understanding the contributions of feature sets inmodelling the predictions.The study discusses the importance of reliable predictive models for early diagnosis of thyroid cancer,and a validation framework of explainability.The proposed model shows an accuracy of 93.48%.Performance metrics such as precision,recall,F1-score,and the area under the receiver operating characteristic(AUROC)are also higher than the baseline models.The results of the proposed model help us identify the dominant feature sets that impact thyroid cancer classification and prediction.The features{calcification}and{shape}consistently emerged as the top-ranked features associated with thyroid malignancy,in both association-rule based interestingnessmetric values and SHAPmethods.The paper highlights the potential of the rule-based integrated models with SHAP in bridging the gap between the machine learning predictions and the interpretability of this prediction which is required for real-world medical applications.
基金Acknowledgments: The work was supported in part by the National Science Foundation of China (No. 70571032) and the Scientific Research Foundation of Hunan Provincial Education Department (No. 06C367).
文摘Based on the intelligent decision support system, a new method was presented to defense the catastrophic infectious disease such as SARS, Bird Flu, etc.. By using All Set theory, the decision support system (DSS) model can be built to analyze the noise information and forecast the trend of the catastrophe then to give the method or policy to defend the disease. The model system is composed of four subsystems: the noise analysis subsystem, forecast and simulation subsystem, diagnosis subsystem and second recovery subsystem. They are discussed briefly in this paper.This model can be used not only for SARS but also for other paroxysmal accidences.
文摘A set game, in which the worth of a coalition is expressed by a set instead of a real number, is a new type of cooperative game. A F-restricted set game is a set game restricted by partition system. The main theorems show the structures of IM-value,OIM-value,SCM-value and ICM-value respectively,and the equivalency of IM value and the OIM-value for monotonic set games restricted by partition system as well.
文摘The objective of this paper is to deal with a kind of fuzzy linear programming problem based on interval\|valued fuzzy sets (IVFLP) through the medium of procedure that turns IVFLP into parametric linear programming via the mathematical programming.Some useful results for the benefit of solving IVFLP are expounded and proved,developed and discussed.Furthermore,that the proposed techniques in this paper allow the decision\|maker to assign a different degree of importance can provide a useful way to efficiently help the decision\|maker make their decisions.