Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ...Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes.展开更多
The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents ...The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.展开更多
The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the mai...The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.展开更多
Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delay...Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delays, which is unable to ensure the integrity and timeliness of the information on decision making for satellites. And the optimization of the planning result is affected. Therefore, the effect of communication delay is considered during the multi-satel ite coordinating process. For this problem, firstly, a distributed cooperative optimization problem for multiple satellites in the delayed communication environment is formulized. Secondly, based on both the analysis of the temporal sequence of tasks in a single satellite and the dynamically decoupled characteristics of the multi-satellite system, the environment information of multi-satellite distributed cooperative optimization is constructed on the basis of the directed acyclic graph(DAG). Then, both a cooperative optimization decision making framework and a model are built according to the decentralized partial observable Markov decision process(DEC-POMDP). After that, a satellite coordinating strategy aimed at different conditions of communication delay is mainly analyzed, and a unified processing strategy on communication delay is designed. An approximate cooperative optimization algorithm based on simulated annealing is proposed. Finally, the effectiveness and robustness of the method presented in this paper are verified via the simulation.展开更多
基金supported by National Key Research and Development Program of China(2018YFC1504502).
文摘Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes.
基金supported by the Key Research and Development Program of Shaanxi(2022GY-089)the Natural Science Basic Research Program of Shaanxi(2022JQ-593).
文摘The deep deterministic policy gradient(DDPG)algo-rithm is an off-policy method that combines two mainstream reinforcement learning methods based on value iteration and policy iteration.Using the DDPG algorithm,agents can explore and summarize the environment to achieve autonomous deci-sions in the continuous state space and action space.In this paper,a cooperative defense with DDPG via swarms of unmanned aerial vehicle(UAV)is developed and validated,which has shown promising practical value in the effect of defending.We solve the sparse rewards problem of reinforcement learning pair in a long-term task by building the reward function of UAV swarms and optimizing the learning process of artificial neural network based on the DDPG algorithm to reduce the vibration in the learning process.The experimental results show that the DDPG algorithm can guide the UAVs swarm to perform the defense task efficiently,meeting the requirements of a UAV swarm for non-centralization,autonomy,and promoting the intelligent development of UAVs swarm as well as the decision-making process.
基金supported by the Aeronautical Science Foundation(2017ZC53033).
文摘The unmanned aerial vehicle(UAV)swarm technology is one of the research hotspots in recent years.With the continuous improvement of autonomous intelligence of UAV,the swarm technology of UAV will become one of the main trends of UAV development in the future.This paper studies the behavior decision-making process of UAV swarm rendezvous task based on the double deep Q network(DDQN)algorithm.We design a guided reward function to effectively solve the problem of algorithm convergence caused by the sparse return problem in deep reinforcement learning(DRL)for the long period task.We also propose the concept of temporary storage area,optimizing the memory playback unit of the traditional DDQN algorithm,improving the convergence speed of the algorithm,and speeding up the training process of the algorithm.Different from traditional task environment,this paper establishes a continuous state-space task environment model to improve the authentication process of UAV task environment.Based on the DDQN algorithm,the collaborative tasks of UAV swarm in different task scenarios are trained.The experimental results validate that the DDQN algorithm is efficient in terms of training UAV swarm to complete the given collaborative tasks while meeting the requirements of UAV swarm for centralization and autonomy,and improving the intelligence of UAV swarm collaborative task execution.The simulation results show that after training,the proposed UAV swarm can carry out the rendezvous task well,and the success rate of the mission reaches 90%.
基金supported by the National Science Foundation for Young Scholars of China(6130123471401175)
文摘Multiple earth observing satellites need to communicate with each other to observe plenty of targets on the Earth together. The factors, such as external interference, result in satellite information interaction delays, which is unable to ensure the integrity and timeliness of the information on decision making for satellites. And the optimization of the planning result is affected. Therefore, the effect of communication delay is considered during the multi-satel ite coordinating process. For this problem, firstly, a distributed cooperative optimization problem for multiple satellites in the delayed communication environment is formulized. Secondly, based on both the analysis of the temporal sequence of tasks in a single satellite and the dynamically decoupled characteristics of the multi-satellite system, the environment information of multi-satellite distributed cooperative optimization is constructed on the basis of the directed acyclic graph(DAG). Then, both a cooperative optimization decision making framework and a model are built according to the decentralized partial observable Markov decision process(DEC-POMDP). After that, a satellite coordinating strategy aimed at different conditions of communication delay is mainly analyzed, and a unified processing strategy on communication delay is designed. An approximate cooperative optimization algorithm based on simulated annealing is proposed. Finally, the effectiveness and robustness of the method presented in this paper are verified via the simulation.