Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend...Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.展开更多
The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects...The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects the students’personality traits,causes dormitory disputes,and affects the students’quality of life and academic quality.This paper collects freshmen's data according to college students’personal preferences,conducts a classification comparison,uses the decision tree classification algorithm based on the information gain principle as the core algorithm of dormitory allocation,determines the description rules of students’personal preferences and decision tree classification preferences,completes the conceptual design of the database of entity relations and data dictionaries,meets students’personality classification requirements for the dormitory,and lays the foundation for the intelligent dormitory allocation system.展开更多
Big data is usually unstructured, and many applications require theanalysis in real-time. Decision tree (DT) algorithm is widely used to analyzebig data. Selecting the optimal depth of DT is time-consuming process as ...Big data is usually unstructured, and many applications require theanalysis in real-time. Decision tree (DT) algorithm is widely used to analyzebig data. Selecting the optimal depth of DT is time-consuming process as itrequires many iterations. In this paper, we have designed a modified versionof a (DT). The tree aims to achieve optimal depth by self-tuning runningparameters and improving the accuracy. The efficiency of the modified (DT)was verified using two datasets (airport and fire datasets). The airport datasethas 500000 instances and the fire dataset has 600000 instances. A comparisonhas been made between the modified (DT) and standard (DT) with resultsshowing that the modified performs better. This comparison was conductedon multi-node on Apache Spark tool using Amazon web services. Resultingin accuracy with an increase of 6.85% for the first dataset and 8.85% for theairport dataset. In conclusion, the modified DT showed better accuracy inhandling different-sized datasets compared to standard DT algorithm.展开更多
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult...Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.展开更多
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
文摘Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.
文摘The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects the students’personality traits,causes dormitory disputes,and affects the students’quality of life and academic quality.This paper collects freshmen's data according to college students’personal preferences,conducts a classification comparison,uses the decision tree classification algorithm based on the information gain principle as the core algorithm of dormitory allocation,determines the description rules of students’personal preferences and decision tree classification preferences,completes the conceptual design of the database of entity relations and data dictionaries,meets students’personality classification requirements for the dormitory,and lays the foundation for the intelligent dormitory allocation system.
文摘Big data is usually unstructured, and many applications require theanalysis in real-time. Decision tree (DT) algorithm is widely used to analyzebig data. Selecting the optimal depth of DT is time-consuming process as itrequires many iterations. In this paper, we have designed a modified versionof a (DT). The tree aims to achieve optimal depth by self-tuning runningparameters and improving the accuracy. The efficiency of the modified (DT)was verified using two datasets (airport and fire datasets). The airport datasethas 500000 instances and the fire dataset has 600000 instances. A comparisonhas been made between the modified (DT) and standard (DT) with resultsshowing that the modified performs better. This comparison was conductedon multi-node on Apache Spark tool using Amazon web services. Resultingin accuracy with an increase of 6.85% for the first dataset and 8.85% for theairport dataset. In conclusion, the modified DT showed better accuracy inhandling different-sized datasets compared to standard DT algorithm.
基金Foundation of China(No.52067013)the Key Natural Science Fund Project of Gansu Provincial Department of Science and Technology(No.21JR7RA280)+1 种基金the Tianyou Innovation Team Science Foundation of Intelligent Power Supply and State Perception for Rail Transit(No.TY202010)the Natural Science Foundation of Gansu Province(No.20JR5RA395).
文摘Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.