期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Automatic Classification of Cardiac Arrhythmias Based on Hybrid Features and Decision Tree Algorithm 被引量:5
1
作者 Santanu Sahoo Asit Subudhi +1 位作者 Manasa Dash Sukanta Sabut 《International Journal of Automation and computing》 EI CSCD 2020年第4期551-561,共11页
Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram(ECG)signals.In a life-threatening situation,an automated system is necessary for early detecti... Accurate classification of cardiac arrhythmias is a crucial task because of the non-stationary nature of electrocardiogram(ECG)signals.In a life-threatening situation,an automated system is necessary for early detection of beat abnormalities in order to reduce the mortality rate.In this paper,we propose an automatic classification system of ECG beats based on the multi-domain features derived from the ECG signals.The experimental study was evaluated on ECG signals obtained from the MIT-BIH Arrhythmia Database.The feature set comprises eight empirical mode decomposition(EMD)based features,three features from variational mode decomposition(VMD)and four features from RR intervals.In total,15 features are ranked according to a ranker search approach and then used as input to the support vector machine(SVM)and C4.5 decision tree classifiers for classifying six types of arrhythmia beats.The proposed method achieved best result in C4.5 decision tree classifier with an accuracy of 98.89%compared to cubic-SVM classifier which achieved an accuracy of 95.35%only.Besides accuracy measures,all other parameters such as sensitivity(Se),specificity(Sp)and precision rates of 95.68%,99.28%and 95.8%was achieved better in C4.5 classifier.Also the computational time of 0.65 s with an error rate of 0.11 was achieved which is very less compared to SVM.The multi-domain based features with decision tree classifier obtained the best results in classifying cardiac arrhythmias hence the system could be used efficiently in clinical practices. 展开更多
关键词 Electrocardiogram(ECG) cardiac arrhythmias empirical mode decomposition(EMD) variational mode decomposition(VMD) hybrid features decision tree classifier
原文传递
Mapping of cropland,cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest 被引量:2
2
作者 Aqil Tariq Jianguo Yan +2 位作者 Alexandre S.Gagnon Mobushir Riaz Khan Faisal Mumtaz 《Geo-Spatial Information Science》 SCIE EI CSCD 2023年第3期302-320,共19页
Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote s... Mapping and monitoring the distribution of croplands and crop types support policymakers and international organizations by reducing the risks to food security,notably from climate change and,for that purpose,remote sensing is routinely used.However,identifying specific crop types,cropland,and cropping patterns using space-based observations is challenging because different crop types and cropping patterns have similarity spectral signatures.This study applied a methodology to identify cropland and specific crop types,including tobacco,wheat,barley,and gram,as well as the following cropping patterns:wheat-tobacco,wheat-gram,wheat-barley,and wheat-maize,which are common in Gujranwala District,Pakistan,the study region.The methodology consists of combining optical remote sensing images from Sentinel-2 and Landsat-8 with Machine Learning(ML)methods,namely a Decision Tree Classifier(DTC)and a Random Forest(RF)algorithm.The best time-periods for differentiating cropland from other land cover types were identified,and then Sentinel-2 and Landsat 8 NDVI-based time-series were linked to phenological parameters to determine the different crop types and cropping patterns over the study region using their temporal indices and ML algorithms.The methodology was subsequently evaluated using Landsat images,crop statistical data for 2020 and 2021,and field data on cropping patterns.The results highlight the high level of accuracy of the methodological approach presented using Sentinel-2 and Landsat-8 images,together with ML techniques,for mapping not only the distribution of cropland,but also crop types and cropping patterns when validated at the county level.These results reveal that this methodology has benefits for monitoring and evaluating food security in Pakistan,adding to the evidence base of other studies on the use of remote sensing to identify crop types and cropping patterns in other countries. 展开更多
关键词 Sentinel-2 Random Forest CROPLAND crop types cropping patterns decision tree Classifier
原文传递
Early Diagnosis of Lung Tumors for Extending Patients’ Life Using Deep Neural Networks
3
作者 A.Manju R.Kaladevi +6 位作者 Shanmugasundaram Hariharan Shih-Yu Chen Vinay Kukreja Pradip Kumar Sharma Fayez Alqahtani Amr Tolba Jin Wang 《Computers, Materials & Continua》 SCIE EI 2023年第7期993-1007,共15页
The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tum... The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques.Computer-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor detected.The application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation tasks.This research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold segmentation.The Honey hook process categorizes lung cancer based on characteristics retrieved using several classifiers.Considering this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using DNN.The proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)classifier.The study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal patients.In contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the network.It is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves. 展开更多
关键词 Lung tumor deep wave auto encoder decision tree classifier deep neural networks extraction techniques
下载PDF
Self-Care Assessment for Daily Living Using Machine Learning Mechanism
4
作者 Mouazma Batool Yazeed Yasin Ghadi +3 位作者 Suliman A.Alsuhibany Tamara al Shloul Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2022年第7期1747-1764,共18页
Nowadays,activities of daily living(ADL)recognition system has been considered an important field of computer vision.Wearable and optical sensors are widely used to assess the daily living activities in healthy people... Nowadays,activities of daily living(ADL)recognition system has been considered an important field of computer vision.Wearable and optical sensors are widely used to assess the daily living activities in healthy people and people with certain disorders.Although conventional ADL utilizes RGB optical sensors but an RGB-D camera with features of identifying depth(distance information)and visual cues has greatly enhanced the performance of activity recognition.In this paper,an RGB-D-based ADL recognition system has been presented.Initially,human silhouette has been extracted from the noisy background of RGB and depth images to track human movement in a scene.Based on these silhouettes,full body features and point based features have been extracted which are further optimized with probability based incremental learning(PBIL)algorithm.Finally,random forest classifier has been used to classify activities into different categories.The n-fold crossvalidation scheme has been used to measure the viability of the proposed model on the RGBD-AC benchmark dataset and has achieved an accuracy of 92.71%over other state-of-the-art methodologies. 展开更多
关键词 Angular geometric features decision tree classifier human activity recognition probability based incremental learning ridge detection
下载PDF
Social Engineering Attack Classifications on Social Media Using Deep Learning
5
作者 Yichiet Aun Ming-Lee Gan +1 位作者 Nur Haliza Binti Abdul Wahab Goh Hock Guan 《Computers, Materials & Continua》 SCIE EI 2023年第3期4917-4931,共15页
In defense-in-depth,humans have always been the weakest link in cybersecurity.However,unlike common threats,social engineering poses vulnerabilities not directly quantifiable in penetration testing.Most skilled social... In defense-in-depth,humans have always been the weakest link in cybersecurity.However,unlike common threats,social engineering poses vulnerabilities not directly quantifiable in penetration testing.Most skilled social engineers trick users into giving up information voluntarily through attacks like phishing and adware.Social Engineering(SE)in social media is structurally similar to regular posts but contains malicious intrinsic meaning within the sentence semantic.In this paper,a novel SE model is trained using a Recurrent Neural Network Long Short Term Memory(RNN-LSTM)to identify well-disguised SE threats in social media posts.We use a custom dataset crawled from hundreds of corporate and personal Facebook posts.First,the social engineering attack detection pipeline(SEAD)is designed to filter out social posts with malicious intents using domain heuristics.Next,each social media post is tokenized into sentences and then analyzed with a sentiment analyzer before being labelled as an anomaly or normal training data.Then,we train an RNN-LSTM model to detect five types of social engineering attacks that potentially contain signs of information gathering.The experimental result showed that the Social Engineering Attack(SEA)model achieves 0.84 in classification precision and 0.81 in recall compared to the ground truth labeled by network experts.The experimental results showed that the semantics and linguistics similarities are an effective indicator for early detection of SEA. 展开更多
关键词 Social engineering attack CYBERSECURITY machine learning(ML) artificial neural network(ANN) random forest classifier decision tree(DT)classifier
下载PDF
Mapping Deciduous Broad-leaved Forested Swamps Using ALOS/Palsar Data
6
作者 BIAN Hongfeng YAN Tingting +2 位作者 ZHANG Zhengxiang HE Chunguang SHENG Lianxi 《Chinese Geographical Science》 SCIE CSCD 2016年第3期352-365,共14页
Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structu... Accurate, updated information on the distribution of wetlands is essential for estimating net fluxes of greenhouse gases and for effectively protecting and managing wetlands. Because of their complex community structure and rich surface vegetation, deciduous broad-leaved forested swamps are considered to be one of the most difficult types of wetland to classify. In this research, with the support of remote sensing and geographic information system, multi-temporal radar images L-Palsar were used initially to extract the forest hydrological layer and phenology phase change layer as two variables through image analysis. Second, based on the environmental characteristics of forested swamps, three decision tree classifiers derived from the two variables were constructed to explore effective methods to identify deciduous broad-leaved forested swamps. Third, this study focused on analyzing the classification process between flat-forests, which are the most severely disturbed elements, and forested swamps. Finally, the application of the decision tree model will be discussed. The results showed that: 1) L-HH band(a L band with wavelength of 0–235 m in HH polarization mode; HH means Synthetic Aperture Radars transmit pulses in horizontal polarization and receive in horizontal polarization) in the leaf-off season is shown to be capable of detecting hydrologic conditions beneath the forest; 2) the accuracy of the classification(forested swamp and forest plat) was 81.5% based on hydrologic features, and 83.5% was achieved by combining hydrologic features and phenology response features, which indicated that hydrological characteristics under the forest played a key role. The HHOJ(refers to the band created by the subtraction with HH band in October and HH band in July) achieved by multi-temporal radar images did improve the classification accuracy, but not significantly, and more leaf-off radar images may be more efficient than multi-seasonal radar images for inland forested swamp mapping; 3) the lower separability between forested swamps dominated by vegetated surfaces and forest plat covered with litter was the main cause of the uncertainty in classification, which led to misleading interpretations of the pixel-based classification. Finally, through the analysis with kappa coefficients, it was shown that the value of the intersection point was an ideal choice for the variable. 展开更多
关键词 forested swamp Palsar radar images forest hydrological characteristics multi-temporal technique decision tree classifier
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部