期刊文献+
共找到777篇文章
< 1 2 39 >
每页显示 20 50 100
Method for triangular fuzzy multiple attribute decision making based on two-dimensional density operator method
1
作者 LIN Youliang LI Wu +1 位作者 LIU Gang HUANG Dong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期178-185,共8页
Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)oper... Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison. 展开更多
关键词 fuzzy decision making clustering density operator multi-attribute decision making(MADM)
下载PDF
Application of Clustering-based Decision Tree in the Screening of Maize Germplasm 被引量:2
2
作者 王斌 《Agricultural Science & Technology》 CAS 2011年第10期1449-1452,共4页
[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm base... [Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm based upon clustering is adopted in this paper,which is improved against the defect that traditional decision tree algorithm fails to handle samples of no classes.Meanwhile,the improved algorithm is also applied to the screening of maize varieties.Through the indices as leaf area,plant height,dry weight,potassium(K) utilization and others,maize seeds with strong tolerance of hypokalemic are filtered out.[Result] The algorithm in the screening of maize germplasm has great applicability and good performance.[Conclusion] In the future more efforts should be made to compare improved the performance of fuzzy decision tree based upon clustering with the performance of traditional fuzzy one,and it should be applied into more realistic problems. 展开更多
关键词 FCM decision tree based upon clustering Screening indices Tolerance of hypokalemic
下载PDF
Clustering Analysis of Black-start Decision-making with a Large Group of Decision-makers
3
作者 Liu, Weijia Lin, Zhenzhi +4 位作者 Wen, Fushuan Xue, Yusheng Dai, Yan Sun, Weizhen Wang, Chao 《电力系统自动化》 EI CSCD 北大核心 2012年第8期154-160,共7页
The optimization of black-start decision-making plays an important role in the rapid restoration of a power system after a major failure/outage.With the introduction of the concept of smart grids and the development o... The optimization of black-start decision-making plays an important role in the rapid restoration of a power system after a major failure/outage.With the introduction of the concept of smart grids and the development of real-time communication networks,the black-start decision-makers are no longer limited to only one or a few power system experts such as dispatchers,but rather a large group of professional people in practice.The overall behaviors of a large decision-making group of decision-makers/experts are more complicated and unpredictable.However,the existing methods for black-start decision-making cannot handle the situations with a large group of decision-makers.Given this background,a clustering algorithm is presented to optimize the black-start decision-making problem with a large group of decision-makers.Group decision-making preferences are obtained by clustering analysis,and the final black-start decision-making results are achieved by combining the weights of black-start indexes and the preferences of the decision-making group.The effectiveness of the proposed method is validated by a practical case.This work extends the black-start decision-making problem to situations with a large group of decision-makers. 展开更多
关键词 决策者 聚类分析 黑启动 大集 实时通信网络 决策问题 电力系统 电源系统
下载PDF
Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management 被引量:18
4
作者 Zizheng Guo Yu Shi +2 位作者 Faming Huang Xuanmei Fan Jinsong Huang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第6期243-261,共19页
Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study pres... Machine learning algorithms are an important measure with which to perform landslide susceptibility assessments, but most studies use GIS-based classification methods to conduct susceptibility zonation.This study presents a machine learning approach based on the C5.0 decision tree(DT) model and the K-means cluster algorithm to produce a regional landslide susceptibility map. Yanchang County, a typical landslide-prone area located in northwestern China, was taken as the area of interest to introduce the proposed application procedure. A landslide inventory containing 82 landslides was prepared and subsequently randomly partitioned into two subsets: training data(70% landslide pixels) and validation data(30% landslide pixels). Fourteen landslide influencing factors were considered in the input dataset and were used to calculate the landslide occurrence probability based on the C5.0 decision tree model.Susceptibility zonation was implemented according to the cut-off values calculated by the K-means cluster algorithm. The validation results of the model performance analysis showed that the AUC(area under the receiver operating characteristic(ROC) curve) of the proposed model was the highest, reaching 0.88,compared with traditional models(support vector machine(SVM) = 0.85, Bayesian network(BN) = 0.81,frequency ratio(FR) = 0.75, weight of evidence(WOE) = 0.76). The landslide frequency ratio and frequency density of the high susceptibility zones were 6.76/km^(2) and 0.88/km^(2), respectively, which were much higher than those of the low susceptibility zones. The top 20% interval of landslide occurrence probability contained 89% of the historical landslides but only accounted for 10.3% of the total area.Our results indicate that the distribution of high susceptibility zones was more focused without containing more " stable" pixels. Therefore, the obtained susceptibility map is suitable for application to landslide risk management practices. 展开更多
关键词 Landslide susceptibility Frequency ratio C5.0 decision tree K-means cluster Classification Risk management
下载PDF
Group decision-making method based on entropy and experts cluster analysis 被引量:12
5
作者 Xuan Zhou Fengming Zhang Xiaobin Hui Kewu Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期468-472,共5页
According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferen... According to the aggregation method of experts' evaluation information in group decision-making,the existing methods of determining experts' weights based on cluster analysis take into account the expert's preferences and the consistency of expert's collating vectors,but they lack of the measure of information similarity.So it may occur that although the collating vector is similar to the group consensus,information uncertainty is great of a certain expert.However,it is clustered to a larger group and given a high weight.For this,a new aggregation method based on entropy and cluster analysis in group decision-making process is provided,in which the collating vectors are classified with information similarity coefficient,and the experts' weights are determined according to the result of classification,the entropy of collating vectors and the judgment matrix consistency.Finally,a numerical example shows that the method is feasible and effective. 展开更多
关键词 group decision-making judgment matrix ENTROPY information similarity coefficient cluster analysis.
下载PDF
Cluster-based Distributed Vertical Handoff Decision Scheme
6
作者 Rami Tawil Jacques Demerjian Guy Pujolle 《通讯和计算机(中英文版)》 2010年第2期62-69,共8页
关键词 垂直切换 决策方案 分布式 集群 下一代无线网络 异构网络环境 信任关系 决策算法
下载PDF
U-Clustering:基于效用聚类的激励学习算法
7
作者 陈焕文 殷苌茗 谢丽娟 《计算机工程与应用》 CSCD 北大核心 2005年第26期37-42,74,共7页
提出了一个新的效用聚类激励学习算法U-Clustering。该算法完全不用像U-Tree算法那样进行边缘节点的生成和测试,它首先根据实例链的观测动作值对实例进行聚类,然后对每个聚类进行特征选择,最后再进行特征压缩,经过压缩后的新特征就成为... 提出了一个新的效用聚类激励学习算法U-Clustering。该算法完全不用像U-Tree算法那样进行边缘节点的生成和测试,它首先根据实例链的观测动作值对实例进行聚类,然后对每个聚类进行特征选择,最后再进行特征压缩,经过压缩后的新特征就成为新的状态空间树节点。通过对NewYorkDriving[2,13]的仿真和算法的实验分析,表明U-Clustering算法对解决大型部分可观测环境问题是比较有效的算法。 展开更多
关键词 激励学习 效用聚类 部分可观测Markov决策过程
下载PDF
Integration Interval Determination and Decision Threshold Optimization for Improved TRPC-UWB Communication Systems 被引量:2
8
作者 Zhonghua Liang Junshan Zang +2 位作者 Xiaojun Yang Xiaodai Dong Huansheng Song 《China Communications》 SCIE CSCD 2017年第5期185-192,共8页
Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) perfo... Integration interval and decision threshold issues were investigated for improved transmitted reference pulse cluster (iTRPC-) ultra-wideband (UWB) systems. Our analysis shows that the bit error rate (BER) performance of iTRPC-UWB systems can be significantly improved via integration interval determination (IID) and decision threshold optimization. For this purpose, two modifications can be made at the autocorrelation receiver as follows. Firstly, the liD processing is performed for autocorrelation operation to capture multi-path energy as much as possible. Secondly, adaptive decision threshold (ADT) instead of zero decision threshold (ZDT), is used as estimated optimal decision threshold for symbol detection. Performance of iTRPCUWB systems using liD and ADT was evaluated in realistic IEEE 802.15.4a UWB channel models and the simulation results demonstrated our theoretical analysis. 展开更多
关键词 ultra-wideband (UWB) improved transmitted reference pulse cluster (iTRPC) integration interval determination (IID) adaptive decision threshold (ADT)
下载PDF
Scientific Train of Thought and Methodological Innovation in the Intelligent Decision Support System for Earthquake Prediction in China 被引量:1
9
作者 Wang Chengmin, Zhou Shengkui, Zhao Yi, Wang Wei, Chen Ronghua, Xu Daoyi, Ma Li, Huang Wei, and Geng JunjunCenter for Analysis and Prediction, CSB, Beijing 100036, China SeismoIogical Bureau of Heilongjiang Province, Harbin 150001, China Seismological Bureau of Shanghai Municipality, Shanghai 100062, China Institute of Geology, CSB, Beijing 100029, China 《Earthquake Research in China》 1999年第3期136-144,共9页
The level of present understanding of earthquake prediction of seismologists at home and abroad is very different. This is because China has opened up a special path of earthquake prediction research that has not been... The level of present understanding of earthquake prediction of seismologists at home and abroad is very different. This is because China has opened up a special path of earthquake prediction research that has not been explored by other countries, with its own advantages and potentialities.Therefore, we considered that it is the most practical way to use the advantages and potentialities for raising the earthquake prediction level. For this purpose, we have developed a set of intelligent decision support system for earthquake prediction, with the analysis of cluster anomalies process at the core. The facts show that it can obviously raise the level of synthetic earthquake prediction. 展开更多
关键词 Intelligent decision support system Analysis of cluster ANOMALIES process.
下载PDF
Research on Clustering Analysis and Its Application in Customer Data Mining of Enterprise 被引量:1
10
作者 WeiZHAO Xiangying LI Liping FU 《International Journal of Technology Management》 2014年第9期16-19,共4页
The paper study improved K-means algorithm and establish indicators to classify customers according to RFM model. Experimental results show that, the new algorithm has good convergence and stability, it has better tha... The paper study improved K-means algorithm and establish indicators to classify customers according to RFM model. Experimental results show that, the new algorithm has good convergence and stability, it has better than single use of FKP algorithms for clustering. Finally the paper study the application of clustering in customer segmentation of mobile communication enterprise. It discusses the basic theory, customer segmentation methods and steps, the customer segmentation model based on consumption behavior psychology, and the segmentation model is successfully applied to the process of marketing decision support. 展开更多
关键词 K-means clustering optimization customer segmentation RFM model decision support
下载PDF
FUZZY DECISION-MAKING OF COMBING ROLLER COVERING FOR SPINNING PURE RAMIE NOIL ROTOR-SPUN YARNS
11
作者 黄秀宝 林廷坤 《Journal of China Textile University(English Edition)》 EI CAS 1993年第1期1-9,共9页
This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for an... This paper deals with the types and specifications of combing roller covering for spinning pureramie noil rotor-spun yarns.A handling mode combining Fuzzy Decision-making and FuzzyCluster Analysis has been used for analyzing the experimental results.It is shown that,with regard to the specifications of the sawtooth clothing of the combing rol-ler,large working angle,large tooth pitch,fine tooth shape,short tooth height,smooth finish andgood wearability are of benefit to improving the spinning stability and the spun yarn properties.The pinned combing roller,however,regardless of its complicated process of production,is sug-gested to be preferred for spinning the pure ramie noil rotor-spun yarns.The handling mode used in this work is efficient in improving the reliability and objectivity ofthe conclusions and can be used for solving the similar problems. 展开更多
关键词 RAMIE COMBING rollers metallic clothing FUZZY decision FUZZY cluster analysis RAMIE NOIL rotor SPINNING
下载PDF
Behind HumanBoost: Analysis of Users’ Trust Decision Patterns for Identifying Fraudulent Websites
12
作者 Daisuke Miyamoto Hiroaki Hazeyama +1 位作者 Youki Kadobayashi Takeshi Takahashi 《Journal of Intelligent Learning Systems and Applications》 2012年第4期319-329,共11页
This paper analyzes users’ trust decision patterns for detecting phishing sites. Our previous work proposed HumanBoost [1] which improves the accuracy of detecting phishing sites by using users’ Past Trust Decisions... This paper analyzes users’ trust decision patterns for detecting phishing sites. Our previous work proposed HumanBoost [1] which improves the accuracy of detecting phishing sites by using users’ Past Trust Decisions (PTDs). Web users are generally required to make trust decisions whenever their personal information is requested by a website. Human-Boostassumed that a database of Web user’s PTD would be transformed into a binary vector, representing phishing or not-phishing, and the binary vector can be used for detecting phishing sites, similar to the existing heuristics. Here, this paper explores the types of the users whose PTDs are useful by running a subject experiment, where 309 participants- browsed 40 websites, judged whether the site appeared to be a phishing site, and described the criterion while assessing the credibility of the site. Based on the result of the experiment, this paper classifies the participants into eight groups by clustering approach and evaluates the detection accuracy for each group. It then clarifies the types of the users who can make suitable trust decisions for HumanBoost. 展开更多
关键词 Detection of PHISHING Sites TRUST decision CREDIBILITY of WEBSITES Machine Learning cluster ANALYSIS
下载PDF
跨界团队网络特征对其颠覆性创新绩效的影响研究
13
作者 林春培 朱晓艳 +2 位作者 余传鹏 廖杨月 李海林 《情报学报》 CSSCI CSCD 北大核心 2024年第4期391-404,共14页
跨界团队在企业等创新主体开展颠覆性创新活动中发挥重要作用,而运用机器学习方法识别其网络特征与颠覆性创新绩效之间殊途同归的组态路径是一个亟待解决的重要问题。本文基于Incopat专利检索平台无人机领域139999条专利数据,采用社区... 跨界团队在企业等创新主体开展颠覆性创新活动中发挥重要作用,而运用机器学习方法识别其网络特征与颠覆性创新绩效之间殊途同归的组态路径是一个亟待解决的重要问题。本文基于Incopat专利检索平台无人机领域139999条专利数据,采用社区发现算法在专利发明人合作关系数据中识别185个跨界团队,依据社会网络理论遴选跨界团队网络特征变量,利用k-means聚类算法对跨界团队进行类型划分,并运用决策树CART(classification and regression trees)算法挖掘不同类型跨界团队网络特征对其颠覆性创新绩效的影响。研究结果表明,①跨界团队共有二元合作、类完全合作和复杂合作3种合作类型,不同跨界团队类型对颠覆性创新绩效影响具有差异性,即类完全合作团队高颠覆性创新绩效占比最高,二元合作团队高颠覆性创新绩效占比最低;②合作强度具有普适性,它是影响不同跨界团队形成不同水平颠覆性创新绩效的核心因素;③合作强度正向影响二元合作团队颠覆性创新绩效,类完全合作团队的颠覆性创新绩效受聚集系数、合作强度与团队规模的共同影响,而对于合作强度较高的复杂合作团队而言,保持较低的网络密度有利于其提升颠覆性创新绩效。 展开更多
关键词 颠覆性创新绩效 跨界团队 网络特征 决策规则 聚类分析
下载PDF
舰船编队电子干扰决策研究
14
作者 史国庆 王秉坤 +3 位作者 张建东 吴勇 杨啟明 张耀中 《电光与控制》 CSCD 北大核心 2024年第6期19-23,共5页
舰船编队的电子干扰资源分配问题在现代海战中占有非常重要的地位,针对舰船编队自卫反导作战干扰资源分配问题,通过联合概率关联算法和优劣解距离法完成对目标的数据融合和威胁度排序,提出干扰资源分配指标,结合模糊理论构建了干扰资源... 舰船编队的电子干扰资源分配问题在现代海战中占有非常重要的地位,针对舰船编队自卫反导作战干扰资源分配问题,通过联合概率关联算法和优劣解距离法完成对目标的数据融合和威胁度排序,提出干扰资源分配指标,结合模糊理论构建了干扰资源分配模型。针对大规模目标干扰资源优化分配问题求解速度慢、难以收敛的问题,引入聚类思想来提高问题的求解速度和求解稳定性。通过改进K-means聚类方法,保证不能将一艘舰船的干扰资源耗尽这一干扰资源分配原则。最终,使用遗传算法求解所建的干扰资源分配模型,对比引入聚类和不使用聚类方法证明了引入聚类对大规模优化分配问题的意义,仿真验证了引入聚类后优化分配方法求解的实时性和稳定性。 展开更多
关键词 雷达干扰 资源分配 多属性决策 K-MEANS聚类 遗传算法
下载PDF
基于机器学习的三支决策研究综述
15
作者 刘盾 高璐玥 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期11-25,共15页
三支决策是粒计算领域一个重要研究方向,其符合人类思维和认知特点,能有效处理实际决策过程中的不确定性问题。三支决策通过引入延迟决策,可以有效降低决策成本和代价,增强对不确定性决策过程的控制并提高模型的可解释性。因此,融合三... 三支决策是粒计算领域一个重要研究方向,其符合人类思维和认知特点,能有效处理实际决策过程中的不确定性问题。三支决策通过引入延迟决策,可以有效降低决策成本和代价,增强对不确定性决策过程的控制并提高模型的可解释性。因此,融合三支决策思想的机器学习方法值得深入研究和探讨。首先,介绍了三支决策基本模型;其次,运用CiteSpace和VOSviewer软件分析了国内外基于机器学习的三支决策领域的研究现状;再者,从研究问题、模型方法和应用背景等角度出发,聚焦于三支决策与聚类模型、分类模型、推荐系统、深度学习模型的融合,整理并总结了现有的研究方法与成果;最后,对基于机器学习的三支决策发展趋势作出了展望。 展开更多
关键词 三支决策 机器学习 三支聚类 三支分类 三支推荐
下载PDF
基于三支决策的灰色可能度聚类方法及应用
16
作者 杜俊良 刘思峰 +2 位作者 刘勇 李志远 张维亮 《运筹与管理》 CSSCI CSCD 北大核心 2024年第1期23-28,共6页
针对经典的灰色可能度聚类评估模型难以判定决策对象的灰类归属和过度聚类等问题,利用三支决策的思想和方法,通过引入三支灰类的概念描述决策对象和灰类之间的不确定聚类关系;将其代替灰色定权聚类中的灰类和严格的聚类关系,构建基于三... 针对经典的灰色可能度聚类评估模型难以判定决策对象的灰类归属和过度聚类等问题,利用三支决策的思想和方法,通过引入三支灰类的概念描述决策对象和灰类之间的不确定聚类关系;将其代替灰色定权聚类中的灰类和严格的聚类关系,构建基于三支决策的灰色可能度聚类方法,并采用决策粗糙集中的贝叶斯推理确定聚类阈值;最后,以案例验证所提方法的有效性和合理性。结果表明:本文所构建的模型是经典灰色可能度聚类评估模型的拓展和泛化,可以有效避免过度聚类,降低决策风险,提高聚类可靠性。 展开更多
关键词 灰色聚类 三支决策 不确定聚类 聚类阈值
下载PDF
智能空战深度强化决策方法现状与展望
17
作者 张烨 涂远刚 +2 位作者 张良 崔颢 王靖宇 《航空兵器》 CSCD 北大核心 2024年第3期21-31,共11页
本文聚焦于现代智能空战决策技术的发展需求,分析了智能空战场景的要素与特点,介绍了现有智能空战决策理论的研究现状,包括基于博弈理论的决策方法、先验数据驱动的决策方法、基于自主学习的决策方法,着重梳理了基于价值和基于策略的深... 本文聚焦于现代智能空战决策技术的发展需求,分析了智能空战场景的要素与特点,介绍了现有智能空战决策理论的研究现状,包括基于博弈理论的决策方法、先验数据驱动的决策方法、基于自主学习的决策方法,着重梳理了基于价值和基于策略的深度强化学习智能决策方法。最后,面向未来智能空战面临的各种挑战以及传统深度强化学习的局限性,展望了深度强化学习技术在空战领域的发展方向:面向集群作战的多体智能决策技术、面向广域时空的高效智能决策技术、面向复杂场景的泛化智能决策技术。 展开更多
关键词 空战决策 人工智能 强化学习 智能博弈 集群作战 深度学习
下载PDF
融合专家领域知识和K-means聚类的三支风险评级方法
18
作者 段维怡 梁德翠 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期26-36,共11页
金融和医疗等实际环境中的决策关键在于决策风险的权衡考虑,准确预测和分类风险级别非常必要。然而,传统的群体决策关注专家评价意见的一致性和共识,对于获得客观的专家评价意见和决策质量的考虑较少,在风险评级场景中难以量化和评估决... 金融和医疗等实际环境中的决策关键在于决策风险的权衡考虑,准确预测和分类风险级别非常必要。然而,传统的群体决策关注专家评价意见的一致性和共识,对于获得客观的专家评价意见和决策质量的考虑较少,在风险评级场景中难以量化和评估决策实际效果。因此,引入数据驱动的思想,利用数据和聚类结果辅助发现专家评估意见,在三支决策理论框架下优化群体意见,改进和计算逻辑回归的判别点,并基于UCI和Kaggle的4个信贷风险和疾病诊断公开数据集,完成风险评级分类。通过数据实验的结果可以发现:与经典的机器学习方法相比,文中提出的基于群体决策的三支分类方法更加关注风险的规避,在各个数据集上的分类表现均有稳定且较优的结果,说明通过发现专家领域知识,利用数据的客观信息辅助专家评估风险有助于解决不同背景的决策问题。 展开更多
关键词 专家领域知识 聚类分析 风险评级 三支决策 决策质量
下载PDF
面向多维度配电网用户典型负荷数据的模糊聚类研究
19
作者 张咏桥 张强 +1 位作者 潘文明 郭俊 《机械设计》 CSCD 北大核心 2024年第S01期146-152,共7页
随着各行各业用电量的不断增加,每年报装容量也相应增多。而配电网用户每时每刻都在产生新的数据。如何利用这些负荷数据,从而给出更加符合实际的业扩报装建议是当前电力行业研究的热点。传统对电网用户负荷数据分析的方法计算复杂度高... 随着各行各业用电量的不断增加,每年报装容量也相应增多。而配电网用户每时每刻都在产生新的数据。如何利用这些负荷数据,从而给出更加符合实际的业扩报装建议是当前电力行业研究的热点。传统对电网用户负荷数据分析的方法计算复杂度高、信息分析不完全,导致很多有效数据没有被利用。文中采用模糊聚类方法对多维度配电网典型用户的负荷数据进行特征挖掘分析。选取我国乌鲁木齐市具有代表性的工业类、社会类电网用户为研究对象,从年负荷数据和日负荷数据出发,利用模糊聚类方法挖掘数据特征,并结合数据分析结果给出部分用户的业扩报装优化建议,最终获取考虑多元负荷因素的精益化报装方案。 展开更多
关键词 负荷特性 配电网 模糊聚类 业扩报装决策
下载PDF
基于MOLA的水库群实时防洪多目标优化调度模型
20
作者 李国智 陈娟 +4 位作者 钟平安 张璐 徐琦 冯小蔓 曹端祥 《中国农村水利水电》 北大核心 2024年第1期117-125,134,共10页
水库群实时防洪优化调度作为一种重要的非工程措施,可以通过较少的投入降低洪水灾害带来的损失,起到流域防洪减灾作用。考虑了各水库自身安全和下游防洪点安全,以下游防洪控制断面最大过水流量最小、各水库最高水位最低为目标函数,建立... 水库群实时防洪优化调度作为一种重要的非工程措施,可以通过较少的投入降低洪水灾害带来的损失,起到流域防洪减灾作用。考虑了各水库自身安全和下游防洪点安全,以下游防洪控制断面最大过水流量最小、各水库最高水位最低为目标函数,建立了水库群实时防洪多目标优化调度模型;引入“滤波算子”,提出一种改进多目标利希滕贝格算法(Multi-Objective Lichtenberg Algorithm,MOLA),进行模型求解,得到水库群实时防洪调度多目标方案集,增强优化调度解在防洪调度实际应用中的可操作性;最后,提出一种基于层次聚类和Pareto前沿物理意义的综合筛选法,对Pareto前沿上的众多调度方案集进行聚集和筛选,选取有限代表解供决策者进行选择,增加防洪决策的聚焦性。研究以淮河史灌河水系为例,进行了水库群实时防洪多目标优化调度模型的应用研究,结果表明:基于改进MOLA的水库群实时防洪多目标优化调度模型计算效率高、实用性较强;采用梯度分析法定量分析了鲇鱼山水库最高水位、梅山水库最高水位、蒋家集断面最大过水流量之间的多目标互馈关系,结果表明梅山水库水位变化对蒋家集断面的组合流量影响更为显著,梅山水库可作为史灌河流域防洪风险调控的优先考虑对象。研究成果可为水库群实时防洪调度提供技术支持和决策参考。 展开更多
关键词 水库群 实时防洪调度 多目标决策 MOLA 层次聚类
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部