Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathema...Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.展开更多
The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchange...The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.展开更多
The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.Fo...The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.展开更多
This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the lim...This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.展开更多
The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q...The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.展开更多
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt...Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.展开更多
In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundame...In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundamental features are also derived.The induced ordered weighted average operator is essential in a q-ROFH environment as the induced ordered aggregation operators are special cases of the existing aggregation operators that already exist in q-ROFH environments.The main function of these operators is to help decision-makers gain a complete understanding of uncertain facts.The proposed aggregation operator is applied to a decision-making problem,with the aim of selecting the most promising real estate project for investment.展开更多
Game theory can be applied to the air combat decision-making problem of multiple unmanned combat air vehicles(UCAVs).However,it is difficult to have satisfactory decision-making results completely relying on air comba...Game theory can be applied to the air combat decision-making problem of multiple unmanned combat air vehicles(UCAVs).However,it is difficult to have satisfactory decision-making results completely relying on air combat situation information,because there is a lot of time-sensitive information in a complex air combat environment.In this paper,a constraint strategy game approach is developed to generate intelligent decision-making for multiple UCAVs in complex air combat environment with air combat situation information and time-sensitive information.Initially,a constraint strategy game is employed to model attack-defense decision-making problem in complex air combat environment.Then,an algorithm is proposed for solving the constraint strategy game based on linear programming and linear inequality(CSG-LL).Finally,an example is given to illustrate the effectiveness of the proposed approach.展开更多
The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years th...The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.展开更多
A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theor...A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.展开更多
Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy mult...Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.展开更多
Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order prefer...Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order preference by similarity to the ideal solution(TOPSIS)is an established DM process.The objective of this report happens to broaden the approach of TOPSIS to solve the DM issues designed with Hesitancy fuzzy data,in which evaluation evidence given by the experts on possible solutions is presents as Hesitancy fuzzy decision matrices,each of which is defined by Hesitancy fuzzy numbers.Findings:we represent analytical results,such as designing a satellite communication network and assessing reservoir operation methods,to demonstrate that our suggested thoughts may be used in DM.Aim:We studied a new testing method for the arti-ficial communication system to give proof of the future construction of satellite earth stations.We aim to identify the best one from the different testing places.We are alsofinding the best operation schemes in the reservoir.In this article,we present the concepts of Laplacian energy(LE)in Hesitancy fuzzy graphs(HFGs),the weight function of LE of HFGs,and the TOPSIS method technique is used to produce the hesitancy fuzzy weighted-average(HFWA).Also,consider practical examples to illustrate the applicability of thefinest design of satellite communication systems and also evaluation of reservoir schemes.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and pu...Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and purchasers is becoming progressively familiar as all industries are moving towards a massive sustainable potential.To handle such sort of developments in supply chain management the involvement of fuzzy settings and their generalisations is playing an important role.Keeping in mind this role,the aim of this study is to analyse the role and involvement of complex q-rung orthopair normal fuzzy(CQRONF)information in supply chain management.The major impact of this theory is to analyse the notion of confidence CQRONF weighted averaging,confidence CQRONF ordered weighted averaging,confidence CQRONF hybrid averaging,confidence CQRONF weighted geometric,confidence CQRONF ordered weighted geometric,confidence CQRONF hybrid geometric operators and try to diagnose various properties and results.Furthermore,with the help of the CRITIC and VIKOR models,we diagnosed the novel theory of the CQRONF-CRITIC-VIKOR model to check the sensitivity analysis of the initiated method.Moreover,in the availability of diagnosed operators,we constructed a multi-attribute decision-making tool for finding a beneficial sustainable supplier to handle complex dilemmas.Finally,the initiated operator's efficiency is proved by comparative analysis.展开更多
The area of operations management has had a substantial effect on the today’s air transportation management.Having moved with huge demand from management to obtain a competitive advantage in the market,the airlines a...The area of operations management has had a substantial effect on the today’s air transportation management.Having moved with huge demand from management to obtain a competitive advantage in the market,the airlines are utilizing advanced optimization techniques to develop decision support systems for operations management and control.In order to provide a service with high quality and low cost,airlines spend a tremendous amount of resources and effort to generate profitable and cost-effective fare classes,flight schedules,fleet plans,aircraft routes,crew scheduling,gate assignment,etc.In this paper,the techniques and operations management applications that are used in the air transportation industry are reviewed including demand forecasting,fleet assignment,aircraft routing,crew scheduling,runway scheduling problem and gate assignment.展开更多
Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance ...Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms.展开更多
Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their...Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.展开更多
In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried ou...In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried out,but these studies are often aimed at individual decision-making in 1 v1 scenarios which rarely happen in actual air combat.Based on the research of the 1 v1 autonomous air combat maneuver decision,this paper builds a multi-UAV cooperative air combat maneuver decision model based on multi-agent reinforcement learning.Firstly,a bidirectional recurrent neural network(BRNN)is used to achieve communication between UAV individuals,and the multi-UAV cooperative air combat maneuver decision model under the actor-critic architecture is established.Secondly,through combining with target allocation and air combat situation assessment,the tactical goal of the formation is merged with the reinforcement learning goal of every UAV,and a cooperative tactical maneuver policy is generated.The simulation results prove that the multi-UAV cooperative air combat maneuver decision model established in this paper can obtain the cooperative maneuver policy through reinforcement learning,the cooperative maneuver policy can guide UAVs to obtain the overall situational advantage and defeat the opponents under tactical cooperation.展开更多
WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operati...WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.展开更多
In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork model...In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.展开更多
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.
文摘The article analyses the problem of determining the operating parameters of the district heating substation cooperating with the air heating system in technological air conditioning systems equipped with heat exchangers with high efficiency of heat recovery.Attention was paid to the correct selection of heat exchangers for the heat output balance depending on the heat recovery protection algorithms against a drop in the temperature of the heat transfer surface below 0℃.Critical parameters were determined in Polish climatic conditions,at which the operation of the heat recovery exchanger in the air conditioning system is switched off or limited.It has been proven that the proper functioning of the district heating substation cooperating with the installation of air conditioning with high heat recovery efficiency requires the use of two heat exchangers with different characteristics,equipped with properly selected temperature control systems.The optimal model of cooperation between the technological air conditioning system and the heating substation was also indicated.
基金supported by the National Natural Science Foundation of China(Grant No.52021005)Outstanding Youth Foundation of Shandong Province of China(Grant No.ZR2021JQ22)Taishan Scholars Program of Shandong Province of China(Grant No.tsqn201909003)。
文摘The decision-making method of tunnel boring machine(TBM)operating parameters has a significant guiding significance for TBM safe and efficient construction,and it has been one of the TBM tunneling research hotspots.For this purpose,this paper introduces an intelligent decision-making method of TBM operating parameters based on multiple constraints and objective optimization.First,linear cutting tests and numerical simulations are used to investigate the physical rules between different cutting parameters(penetration,cutter spacing,etc.)and rock compressive strength.Second,a dual-driven mapping of rock parameters and TBM operating parameters based on data mining and physical rules of rock breaking is established with high accuracy by combining rock-breaking rules and deep neural networks(DNNs).The decision-making method is established by dual-driven mapping,using the effective rock-breaking capacity and the rated value of mechanical parameters as constraints and the total excavation cost as the optimization objective.The best operational parameters can be obtained by searching for the revolutions per minute and penetration that correspond to the extremum of the constrained objective function.The practicability and effectiveness of the developed decision-making model is verified in the SecondWater Source Channel of Hangzhou,China,resulting in the average penetration rate increasing by 11.3%and the total cost decreasing by 10%.
文摘This paper proposes a multi-criteria decision-making (MCGDM) method based on the improved single-valued neutrosophic Hamacher weighted averaging (ISNHWA) operator and grey relational analysis (GRA) to overcome the limitations of present methods based on aggregation operators. First, the limitations of several existing single-valued neutrosophic weighted averaging aggregation operators (i.e. , the single-valued neutrosophic weighted averaging, single-valued neutrosophic weighted algebraic averaging, single-valued neutrosophic weighted Einstein averaging, single-valued neutrosophic Frank weighted averaging, and single-valued neutrosophic Hamacher weighted averaging operators), which can produce some indeterminate terms in the aggregation process, are discussed. Second, an ISNHWA operator was developed to overcome the limitations of existing operators. Third, the properties of the proposed operator, including idempotency, boundedness, monotonicity, and commutativity, were analyzed. Application examples confirmed that the ISNHWA operator and the proposed MCGDM method are rational and effective. The proposed improved ISNHWA operator and MCGDM method can overcome the indeterminate results in some special cases in existing single-valued neutrosophic weighted averaging aggregation operators and MCGDM methods.
文摘The objective of this paper is to present a new concept,named cubic q-rung orthopair fuzzy linguistic set(Cq-ROFLS),to quantify the uncertainty in the information.The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,where membership degrees and nonmembership degrees are represented in terms of linguistic variables.The basic notions of Cq-ROFLS have been introduced and study their basic operations and properties.Furthermore,to aggregate the different pairs of preferences,we introduce the Cq-ROFL Muirhead mean-(MM),weighted MM-,dual MM-based operators.The major advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time.On the other hand,the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables.Several properties and relation of the derived operators are argued.In addition,we also investigate multiattribute decision-making problems under the Cq-ROFLS environment and illustrate with a numerical example.Finally,the effectiveness and advantages of the work are established by comparing with other methods.
文摘Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem.
文摘In this paper,a decision-making problem with a q-rung orthopair fuzzy hypersoft environment is developed,and two operators of ordered weighted average and induced ordered weighted average are developed.Several fundamental features are also derived.The induced ordered weighted average operator is essential in a q-ROFH environment as the induced ordered aggregation operators are special cases of the existing aggregation operators that already exist in q-ROFH environments.The main function of these operators is to help decision-makers gain a complete understanding of uncertain facts.The proposed aggregation operator is applied to a decision-making problem,with the aim of selecting the most promising real estate project for investment.
基金supported by Major Projects for Science and Technology Innovation 2030(Grant No.2018AA0100800)Equipment Pre-research Foundation of Laboratory(Grant No.61425040104)in part by Jiangsu Province“333”project under Grant BRA2019051.
文摘Game theory can be applied to the air combat decision-making problem of multiple unmanned combat air vehicles(UCAVs).However,it is difficult to have satisfactory decision-making results completely relying on air combat situation information,because there is a lot of time-sensitive information in a complex air combat environment.In this paper,a constraint strategy game approach is developed to generate intelligent decision-making for multiple UCAVs in complex air combat environment with air combat situation information and time-sensitive information.Initially,a constraint strategy game is employed to model attack-defense decision-making problem in complex air combat environment.Then,an algorithm is proposed for solving the constraint strategy game based on linear programming and linear inequality(CSG-LL).Finally,an example is given to illustrate the effectiveness of the proposed approach.
文摘The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.
文摘A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.
基金This paper was supported by Wonkwang University in 2022.
文摘Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.
文摘Decision-making(DM)is a process in which several persons concur-rently engage,examine the problems,evaluate potential alternatives,and select an appropriate option to the problem.Technique for determining order preference by similarity to the ideal solution(TOPSIS)is an established DM process.The objective of this report happens to broaden the approach of TOPSIS to solve the DM issues designed with Hesitancy fuzzy data,in which evaluation evidence given by the experts on possible solutions is presents as Hesitancy fuzzy decision matrices,each of which is defined by Hesitancy fuzzy numbers.Findings:we represent analytical results,such as designing a satellite communication network and assessing reservoir operation methods,to demonstrate that our suggested thoughts may be used in DM.Aim:We studied a new testing method for the arti-ficial communication system to give proof of the future construction of satellite earth stations.We aim to identify the best one from the different testing places.We are alsofinding the best operation schemes in the reservoir.In this article,we present the concepts of Laplacian energy(LE)in Hesitancy fuzzy graphs(HFGs),the weight function of LE of HFGs,and the TOPSIS method technique is used to produce the hesitancy fuzzy weighted-average(HFWA).Also,consider practical examples to illustrate the applicability of thefinest design of satellite communication systems and also evaluation of reservoir schemes.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
文摘Supply chain management is an essential part of an organisation's sustainable programme.Understanding the concentration of natural environment,public,and economic influence and feasibility of your suppliers and purchasers is becoming progressively familiar as all industries are moving towards a massive sustainable potential.To handle such sort of developments in supply chain management the involvement of fuzzy settings and their generalisations is playing an important role.Keeping in mind this role,the aim of this study is to analyse the role and involvement of complex q-rung orthopair normal fuzzy(CQRONF)information in supply chain management.The major impact of this theory is to analyse the notion of confidence CQRONF weighted averaging,confidence CQRONF ordered weighted averaging,confidence CQRONF hybrid averaging,confidence CQRONF weighted geometric,confidence CQRONF ordered weighted geometric,confidence CQRONF hybrid geometric operators and try to diagnose various properties and results.Furthermore,with the help of the CRITIC and VIKOR models,we diagnosed the novel theory of the CQRONF-CRITIC-VIKOR model to check the sensitivity analysis of the initiated method.Moreover,in the availability of diagnosed operators,we constructed a multi-attribute decision-making tool for finding a beneficial sustainable supplier to handle complex dilemmas.Finally,the initiated operator's efficiency is proved by comparative analysis.
文摘The area of operations management has had a substantial effect on the today’s air transportation management.Having moved with huge demand from management to obtain a competitive advantage in the market,the airlines are utilizing advanced optimization techniques to develop decision support systems for operations management and control.In order to provide a service with high quality and low cost,airlines spend a tremendous amount of resources and effort to generate profitable and cost-effective fare classes,flight schedules,fleet plans,aircraft routes,crew scheduling,gate assignment,etc.In this paper,the techniques and operations management applications that are used in the air transportation industry are reviewed including demand forecasting,fleet assignment,aircraft routing,crew scheduling,runway scheduling problem and gate assignment.
基金co-supported by the National Natural Science Foundation of China(No.52272382)the Aeronautical Science Foundation of China(No.20200017051001)the Fundamental Research Funds for the Central Universities,China.
文摘Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms.
基金This study has received funding by the Science and Technology Plan Project of Keqiao District(No.2020KZ58).
文摘Since existing selection methods of surgical treatment schemes of renal cancer patients mainly depend on physicians’clinical experience and judgments,the surgical treatment options of renal cancer patients lack their scientifical and reasonable information expression and group decision-making model for renal cancer patients.Fuzzy multi-sets(FMSs)have a number of properties,which make them suitable for expressing the uncertain information of medical diagnoses and treatments in group decision-making(GDM)problems.To choose the most appropriate surgical treatment scheme for a patient with localized renal cell carcinoma(RCC)(T1 stage kidney tumor),this article needs to develop an effective GDM model based on the fuzzy multivalued evaluation information of the renal cancer patients.First,we propose a conversionmethod of transforming FMSs into entropy fuzzy sets(EFSs)based on the mean and Shannon entropy of a fuzzy sequence in FMS to reasonably simplify the information expression and operations of FMSs and define the score function of an entropy fuzzy element(EFE)for ranking EFEs.Second,we present the Aczel-Alsina t-norm and t-conorm operations of EFEs and the EFE Aczel-Alsina weighted arithmetic averaging(EFEAAWAA)and EFE Aczel-Alsina weighted geometric averaging(EFEAAWGA)operators.Third,we develop a multicriteria GDM model of renal cancer surgery options in the setting of FMSs.Finally,the proposed GDM model is applied to two clinical cases of renal cancer patients to choose the best surgical treatment scheme for a renal cancer patient in the setting of FMSs.The selected results of two clinical cases verify the efficiency and rationality of the proposed GDM model in the setting of FMSs.
基金supported by the Aeronautical Science Foundation of China(2017ZC53033)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(CX2020156)。
文摘In order to improve the autonomous ability of unmanned aerial vehicles(UAV)to implement air combat mission,many artificial intelligence-based autonomous air combat maneuver decision-making studies have been carried out,but these studies are often aimed at individual decision-making in 1 v1 scenarios which rarely happen in actual air combat.Based on the research of the 1 v1 autonomous air combat maneuver decision,this paper builds a multi-UAV cooperative air combat maneuver decision model based on multi-agent reinforcement learning.Firstly,a bidirectional recurrent neural network(BRNN)is used to achieve communication between UAV individuals,and the multi-UAV cooperative air combat maneuver decision model under the actor-critic architecture is established.Secondly,through combining with target allocation and air combat situation assessment,the tactical goal of the formation is merged with the reinforcement learning goal of every UAV,and a cooperative tactical maneuver policy is generated.The simulation results prove that the multi-UAV cooperative air combat maneuver decision model established in this paper can obtain the cooperative maneuver policy through reinforcement learning,the cooperative maneuver policy can guide UAVs to obtain the overall situational advantage and defeat the opponents under tactical cooperation.
文摘WTA (weapon-target allocation) of air defense operation is a very complicated problem and current models focus on static and restricted WTA problem mostly. Based on the dynamic characteristics of air defense operational command and decision of warships' formation, a dynamic WTA model is established. Simulation results show that switch fire and repetition fire of anti-air weapon system affect the result of the air defense operation remarkably and the dynamic model is more satisfying than static ones. Related results are gained based on the analysis of the simulation results and the results are accordant with the intuitionistic tactical judgment. The model is some reference for the research of air defense C^3I system of warships' formation.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.