期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
1
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-ADAPTIVE numerical optimization evolutionary al-gorithm stochastic search algorithm.
下载PDF
Enhancing MOEA/D with uniform population initialization,weight vector design and adjustment using uniform design 被引量:2
2
作者 Ying Zhang Rennong Yang +1 位作者 Jialiang Zuo Xiaoning Jing 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第5期1010-1022,共13页
In order to exploit the enhancement of the multi- objective evolutionary algorithm based on decomposition (MOEA/D), we propose an improved algorithm with uniform de- sign (UD), i.e. MOEA/D-UD. Three mechanisms in ... In order to exploit the enhancement of the multi- objective evolutionary algorithm based on decomposition (MOEA/D), we propose an improved algorithm with uniform de- sign (UD), i.e. MOEA/D-UD. Three mechanisms in MOEA/D-UD are modified by introducing an experimental design method called UD. To fully employ the information contained in the domain of the multi-objective problem, we apply UD to initialize a uniformly scattered population. Then, motivated by the analysis of the re- lationship between weight vectors and optimal solutions of scalar subproblems in the study of MOEND with adaptive weight ad- justment (MOEA/D-AWA), a new weight vector design method based on UD is introduced. To distinguish real sparse regions from pseudo sparse regions, i.e. discontinuous regions, of the complex Pareto front, the weight vector adjustment strategy in MOEMD-UD adequately utilizes the information from neighbors of individuals. In the experimental study, we compare MOEA/D-UD with three outstanding algorithms, namely MOEA/D with the dif- ferential evolution operator (MOEA/D-DE), MOEA/D-AWA and the nondominated sorting genetic algorithm II (NSGA-II) on nineteen test instances. The experimental results show that MOEA/D-UD is capable of obtaining a well-converged and well diversified set of solutions within an acceptable execution time. 展开更多
关键词 multi-objective optimization decomposition-based evolutionary algorithm uniform design (UD)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部