When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary lay...When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary layer thickness near the side wall on the flow and leakage characteristics in sealing chamber,the numerical calculation of the cavity flow in the sealing chamber under different inflow boundary layer thicknesses is carried out.The results show that three-dimensional cavity flow structures are close to being asymmetric,and the entrance pressure of the leakage path can also be affected by asymmetry;with the increase of the thickness of the boundary layer,the pressure at the cavity floor and the seal entrance decreases.Finally,the existing leakage prediction model is modified according to the distribution rule of the cavity floor and the flow properties in the leakage path.展开更多
Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the la...Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.展开更多
Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well so...Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well solved by optimization of geometrical parameters and molded line of spiral groove. A new type of bionic cluster spiral groove DGS(CS?DGS) is proved to have superior film stability than S?DGS at the condition of high?speed and low?pressure numerically. A bionic CS?DGS is experimentally investigated and compared with common S?DGS in order to provide evidence for theoretical study. The film thickness and leakage rate of both bionic spiral groove and common spiral groove DGS are measured and compared with each other and with theoretical values under different closing force at the condition of static pressure, high?speed and low?pressure, and the film stiffness and stiffness?leakage ratio of these two face seals are derived by the relationship between closing force and film thickness at the steady state. Experimental results agree well with the theory that the leakage and stiffness of bionic CS?DGS are superior to that of common S?DGS under the condition of high?speed and low?pressure, with the decreasing amplitude of 20% to 40% and the growth amplitude of 20%, respectively. The opening performance and stiffness characteristics of bionic CS?DGS are inferior to that of common S?DGS when rotation speed equals to 0 r/min. The proposed research provides a new method to measure the axis film stiffness of DGS, and validates the superior performance of bionic CS?DGS at the condition of high?speed and low?pressure experimentally.展开更多
The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals duri...The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.展开更多
One of the important problems to be tackled in turbo machines is the leakage dynamics characteristics of labyrinth seals. In this paper we analyzed the effect of labyrinth seal structure and the change in fluid flow p...One of the important problems to be tackled in turbo machines is the leakage dynamics characteristics of labyrinth seals. In this paper we analyzed the effect of labyrinth seal structure and the change in fluid flow pressure on the leakage characteristics of seal. Computational fluid dynamics (CFD) model for 3D labyrinth seal was built which provides a basis for reducing steam flow excitation. The streamline pattern and the pressure drop characteristics for leakage of steam through a labyrinth seal was investigated. Simulations of internal flow and leakage characteristics had been performed by CFD software and Black-Child model. The results showed that the amount of leakage is directly proportional to the tooth gap and inlet pressure and inversely proportional to the cavity depth and outlet pressure. The proposed CFD model provides a feasible method to predict the leakage characteristics of labyrinth seal in response to the structure of seal and the change in inlet-outlet pressures.展开更多
In order to better application of brush seal in rotating machinery,the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds-Averaged Navier-Stokes( RANS) ...In order to better application of brush seal in rotating machinery,the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds-Averaged Navier-Stokes( RANS) model coupling with a non-Darcian porous medium model. The reliability of the present numerical method is proved,which is in agreement with the experimental and numerical results from literatures. Three different bristle pack thicknesses,fence heights and initial clearances under different pressure ratios,rotational velocities and other operating conditions are utilized to investigate the effects of geometry modification on the brush seal leakage flow behaviors. It discusses the effectiveness of various geometry configurations outlining important flow features. The results indicate that the increase of fence height and clearance would lead to the increase of leakage rate. But the leakage is not linearly with respect to the bristle pack thickness,and the effect of rotational velocity is not obvious. Moreover,the detailed leakage flow fields and pressure distributions along the rotor surface,free bristle height,and fence height of the brush seals are also presented. The static pressure drop amplitude through the bristle pack and the pressure rise amplitude through the cavity would increase while the pressure differential increases. And the axial pressure is the main reason of bristle blow down. The results provide theoretical support for the brush seal structure optimal design.展开更多
The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It ...The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It has been found that the honeycomb seal leakage during a rotor speed of 6000 r/min decreases by about 4.8 percent as compared with that during a rotor speed of 0 r/min. At a radial clearance of 0.12 mm the honeycomb seal with a cell size of 1.6 mm enjoys the best sealing performance. The leakage flow of the labyrinth seal with a radial clearance of 0.06 mm is smaller than that of the honeycomb seals.展开更多
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p...The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.展开更多
Based on the experience of GIS equipment maintenance, the causes of air leakage defects of GIS equipment running in a 330 substation were analyzed. After the equipment was disassembled, the main causes of air leakage ...Based on the experience of GIS equipment maintenance, the causes of air leakage defects of GIS equipment running in a 330 substation were analyzed. After the equipment was disassembled, the main causes of air leakage were found, and a series of improvement measures were taken to eliminate the GIS equipment leakage defect. And the effective and feasible advice was put forward for this type of air leakage problem. The results lay a foundation for the safe and stable operation of GIS equipment.展开更多
基金supported by the Opening Foundation of National State Key Laboratory of High Temperature Gas Dynamics(No.2021KF07)。
文摘When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary layer thickness near the side wall on the flow and leakage characteristics in sealing chamber,the numerical calculation of the cavity flow in the sealing chamber under different inflow boundary layer thicknesses is carried out.The results show that three-dimensional cavity flow structures are close to being asymmetric,and the entrance pressure of the leakage path can also be affected by asymmetry;with the increase of the thickness of the boundary layer,the pressure at the cavity floor and the seal entrance decreases.Finally,the existing leakage prediction model is modified according to the distribution rule of the cavity floor and the flow properties in the leakage path.
基金supported by China Postdoctoral Science Foundation (Grant No. 20070410323)Jiangsu Provincial Planned Projects for Postdoctoral Research Funds of China (Grant No. 0701001C)Jiangsu Provincial Planned Projects for Fostering Talents of Six Scientific Fields of China (Grant No. 07-D-027)
文摘Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.
基金Supported by National Natural Science Foundation of China(Grant No.51575490)National Key Basic Research Development Plan(973 Plan,Grant No.2014CB046404)+1 种基金Key Program of Zhejiang Provincial Natural Science Fund Project(Grant No.LZ15E050002)Zhejiang Provincial Natural Science Foundation of Youth Fund(Grant No.LQ17E050008)
文摘Spiral groove dry gas seal(S?DGS), the most widely used DGS in the world, encounters the problem of high leakage rate and inferior film stability when used in high?speed machinery equipment, which could not be well solved by optimization of geometrical parameters and molded line of spiral groove. A new type of bionic cluster spiral groove DGS(CS?DGS) is proved to have superior film stability than S?DGS at the condition of high?speed and low?pressure numerically. A bionic CS?DGS is experimentally investigated and compared with common S?DGS in order to provide evidence for theoretical study. The film thickness and leakage rate of both bionic spiral groove and common spiral groove DGS are measured and compared with each other and with theoretical values under different closing force at the condition of static pressure, high?speed and low?pressure, and the film stiffness and stiffness?leakage ratio of these two face seals are derived by the relationship between closing force and film thickness at the steady state. Experimental results agree well with the theory that the leakage and stiffness of bionic CS?DGS are superior to that of common S?DGS under the condition of high?speed and low?pressure, with the decreasing amplitude of 20% to 40% and the growth amplitude of 20%, respectively. The opening performance and stiffness characteristics of bionic CS?DGS are inferior to that of common S?DGS when rotation speed equals to 0 r/min. The proposed research provides a new method to measure the axis film stiffness of DGS, and validates the superior performance of bionic CS?DGS at the condition of high?speed and low?pressure experimentally.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026006)
文摘The labyrinth seal in turbomachinery is a key element that restricts leakage flow among rotor-stator clearances from high-pressure regions to low-pressure regions. The fluid-induced forces on the rotor from seals during machine operation must be accurately quantified to predict their dynamic behavior effectively. To understand the fluid-induced force characteristics of the labyrinth seal more fully, the effects of four types of pre-swirls on the leakage, flow field, and fluid-induced force of a rotary straight-through labyrinth gas seal (RSTLGS) were numerically investigated using the proposed steady computational fluid dynamics (CFD) method based on the three-dimensional models of the RSTLGS. The leakage, flow field, and fluid-induced force of the RSTLGS for six axial pre-swirl velocities, four radial preswirl angles, four circumferential positive pre-swirl angles, and four circumferential negative pre-swirl angles were computed under the same geometrical parameters and operational conditions. Mesh analysis ensures the accuracy of the present steady CFD method. The numerical results show that the four types of pre-swirls influence the leakage, flow field, and fluid-induced force of the RSTLGS. The axial pre-swirl velocity remarkably inhibits the fluid-induced force, and the circumferential positive pre-swirl angle and circumferential negative pre-swirl angle remarkably promote the fluid-induced force. The effects of the radial pre-swirl angle on the fluid-induced force are complicated, and the pressure forces and viscous forces show the maximum or minimum values at a specific radial pre-swirl angle. The pre-swirl has a negligible impact on the leakage. The four types of pre-swirls affect the leakage, flow field, and fluidinduced force of the RSTLGS to varying degrees. The pre-swirl is the influence factor affecting the leakage, flow field, and fluid-induced force of the RSTLGS. The conclusions will help to understand the fluid-induced force of labyrinth seals more fully, by providing helpful suggestions for engineering practices and a theoretical basis to analyze the fluid–structure interaction of the seal-rotor system in future research.
基金Sponsored by the National Natural Science Foundation of China (Grant No.10872054,10872055 and 50903082)
文摘One of the important problems to be tackled in turbo machines is the leakage dynamics characteristics of labyrinth seals. In this paper we analyzed the effect of labyrinth seal structure and the change in fluid flow pressure on the leakage characteristics of seal. Computational fluid dynamics (CFD) model for 3D labyrinth seal was built which provides a basis for reducing steam flow excitation. The streamline pattern and the pressure drop characteristics for leakage of steam through a labyrinth seal was investigated. Simulations of internal flow and leakage characteristics had been performed by CFD software and Black-Child model. The results showed that the amount of leakage is directly proportional to the tooth gap and inlet pressure and inversely proportional to the cavity depth and outlet pressure. The proposed CFD model provides a feasible method to predict the leakage characteristics of labyrinth seal in response to the structure of seal and the change in inlet-outlet pressures.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11272100)
文摘In order to better application of brush seal in rotating machinery,the leakage flow characteristics of the brush seal considering geometry effects are numerically analyzed using Reynolds-Averaged Navier-Stokes( RANS) model coupling with a non-Darcian porous medium model. The reliability of the present numerical method is proved,which is in agreement with the experimental and numerical results from literatures. Three different bristle pack thicknesses,fence heights and initial clearances under different pressure ratios,rotational velocities and other operating conditions are utilized to investigate the effects of geometry modification on the brush seal leakage flow behaviors. It discusses the effectiveness of various geometry configurations outlining important flow features. The results indicate that the increase of fence height and clearance would lead to the increase of leakage rate. But the leakage is not linearly with respect to the bristle pack thickness,and the effect of rotational velocity is not obvious. Moreover,the detailed leakage flow fields and pressure distributions along the rotor surface,free bristle height,and fence height of the brush seals are also presented. The static pressure drop amplitude through the bristle pack and the pressure rise amplitude through the cavity would increase while the pressure differential increases. And the axial pressure is the main reason of bristle blow down. The results provide theoretical support for the brush seal structure optimal design.
基金National Emphases Basis Research Development and Programming Project(G1999022304)
文摘The test results of sealing performance and a comparison between three types of honeycomb seals and a type of labyrinth seal are presented, which have different seal clearances and work under various rotor speeds. It has been found that the honeycomb seal leakage during a rotor speed of 6000 r/min decreases by about 4.8 percent as compared with that during a rotor speed of 0 r/min. At a radial clearance of 0.12 mm the honeycomb seal with a cell size of 1.6 mm enjoys the best sealing performance. The leakage flow of the labyrinth seal with a radial clearance of 0.06 mm is smaller than that of the honeycomb seals.
基金the Strategic Pilot Technology Chinese Academy of Sciences(No.XDA02010500).
文摘The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.
文摘Based on the experience of GIS equipment maintenance, the causes of air leakage defects of GIS equipment running in a 330 substation were analyzed. After the equipment was disassembled, the main causes of air leakage were found, and a series of improvement measures were taken to eliminate the GIS equipment leakage defect. And the effective and feasible advice was put forward for this type of air leakage problem. The results lay a foundation for the safe and stable operation of GIS equipment.