Contagious pathogens like COVID-19 transmitted via respiratory droplets spread effortlessly in the passenger compartments of transport,significantly jeopardizing passengers’safety when taking public transportation.To...Contagious pathogens like COVID-19 transmitted via respiratory droplets spread effortlessly in the passenger compartments of transport,significantly jeopardizing passengers’safety when taking public transportation.To date,studies on the fundamental theories of airborne droplet transmission and the engineering application of decontamination techniques are insufficient for the prevention and control of pathogens transmitting in the compartments of passenger transport.It is essential to systematically investigate the control approaches to restrain pathogens from transmitting in passenger compartments.Herein,a theoretical framework for calculating the transmission of pathogens in a complex compartment environment was proposed,and experimental platforms that satisfy the Biosafety Level-2 Laboratory safety level for compartment environment simulations were built based on a set of real train cabins.On these bases,numerical investigations on the motion of pathogen-laden droplets were conducted,and decontamination techniques were examined experimentally.Thereby,control measures on the pathogen transmission and pathogen decontamination schemes were proposed.Moreover,highly efficient decontamination devices were developed,and coping strategies for epidemic emergencies were devised.The outcomes provide theoretical and technical support for developing the next generation of transportation and the prevention and control measures cooperatively considering regular and pandemic times.展开更多
基金This work is supported by the consulting research project of the major project of China National Railway Group Co.,Ltd.(No.K2020J003)the Chinese Academy of Engineering(No.2020-XY-79)。
文摘Contagious pathogens like COVID-19 transmitted via respiratory droplets spread effortlessly in the passenger compartments of transport,significantly jeopardizing passengers’safety when taking public transportation.To date,studies on the fundamental theories of airborne droplet transmission and the engineering application of decontamination techniques are insufficient for the prevention and control of pathogens transmitting in the compartments of passenger transport.It is essential to systematically investigate the control approaches to restrain pathogens from transmitting in passenger compartments.Herein,a theoretical framework for calculating the transmission of pathogens in a complex compartment environment was proposed,and experimental platforms that satisfy the Biosafety Level-2 Laboratory safety level for compartment environment simulations were built based on a set of real train cabins.On these bases,numerical investigations on the motion of pathogen-laden droplets were conducted,and decontamination techniques were examined experimentally.Thereby,control measures on the pathogen transmission and pathogen decontamination schemes were proposed.Moreover,highly efficient decontamination devices were developed,and coping strategies for epidemic emergencies were devised.The outcomes provide theoretical and technical support for developing the next generation of transportation and the prevention and control measures cooperatively considering regular and pandemic times.