期刊文献+
共找到193篇文章
< 1 2 10 >
每页显示 20 50 100
New Regularization Algorithms for Solving the Deconvolution Problem in Well Test Data Interpretation 被引量:1
1
作者 Vladimir Vasin Georgy Skorik +1 位作者 Evgeny Pimonov Fikri Kuchuk 《Applied Mathematics》 2010年第5期387-399,共13页
Two new regularization algorithms for solving the first-kind Volterra integral equation, which describes the pressure-rate deconvolution problem in well test data interpretation, are developed in this paper. The main ... Two new regularization algorithms for solving the first-kind Volterra integral equation, which describes the pressure-rate deconvolution problem in well test data interpretation, are developed in this paper. The main features of the problem are the strong nonuniform scale of the solution and large errors (up to 15%) in the input data. In both algorithms, the solution is represented as decomposition on special basic functions, which satisfy given a priori information on solution, and this idea allow us significantly to improve the quality of approximate solution and simplify solving the minimization problem. The theoretical details of the algorithms, as well as the results of numerical experiments for proving robustness of the algorithms, are presented. 展开更多
关键词 deconvolution PROBLEM VOLTERRA Equations Well Test REGULARIZATION algorithm Quasi-Solutions Method Tikhonov REGULARIZATION A Priori Information Discrete Approximation Non-Quadratic Stabilizing Functional Special Basis
下载PDF
AN IMPROVED FAST BLIND DECONVOLUTION ALGORITHM BASED ON DECORRELATION AND BLOCK MATRIX
2
作者 Yang Jun'an He Xuefan 《Journal of Electronics(China)》 2008年第5期577-582,共6页
In order to alleviate the shortcomings of most blind deconvolution algorithms,this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix.Althougt... In order to alleviate the shortcomings of most blind deconvolution algorithms,this paper proposes an improved fast algorithm for blind deconvolution based on decorrelation technique and broadband block matrix.Althougth the original algorithm can overcome the shortcomings of current blind deconvolution algorithms,it has a constraint that the number of the source signals must be less than that of the channels.The improved algorithm deletes this constraint by using decorrelation technique.Besides,the improved algorithm raises the separation speed in terms of improving the computing methods of the output signal matrix.Simulation results demonstrate the validation and fast separation of the improved algorithm. 展开更多
关键词 Blind deconvolution Fast algorithm DECORRELATION Block matrix
下载PDF
A Bregman adaptive sparse-spike deconvolution method in the frequency domain 被引量:2
3
作者 Pan Shu-Lin Yan Ke +1 位作者 Lan Hai-Qiang Qin Zi-Yu 《Applied Geophysics》 SCIE CSCD 2019年第4期463-472,560,共11页
To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the freque... To improve the anti-noise performance of the time-domain Bregman iterative algorithm,an adaptive frequency-domain Bregman sparse-spike deconvolution algorithm is proposed.By solving the Bregman algorithm in the frequency domain,the influence of Gaussian as well as outlier noise on the convergence of the algorithm is effectively avoided.In other words,the proposed algorithm avoids data noise effects by implementing the calculations in the frequency domain.Moreover,the computational efficiency is greatly improved compared with the conventional method.Generalized cross validation is introduced in the solving process to optimize the regularization parameter and thus the algorithm is equipped with strong self-adaptation.Different theoretical models are built and solved using the algorithms in both time and frequency domains.Finally,the proposed and the conventional methods are both used to process actual seismic data.The comparison of the results confirms the superiority of the proposed algorithm due to its noise resistance and self-adaptation capability. 展开更多
关键词 deconvolution split Bregman algorithm frequency domain generalized cross validation OUTLIERS
下载PDF
Deconvolution techniques for characterizing indoor UWB wireless channel
4
作者 Wang Yang Zhang Naitong Zhang Qinyu Zhang Zhongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期688-693,共6页
A deconvolution algorithm is proposed to account for the distortions of impulse shape introduced by propagation process. By finding the best correlation of the received waveform with the multiple templates, the number... A deconvolution algorithm is proposed to account for the distortions of impulse shape introduced by propagation process. By finding the best correlation of the received waveform with the multiple templates, the number of multipath components is reduced as the result of eliminating the "phantom paths", and the captured energy increases. Moreover, it needs only a single reference measurement in real measurement environment (do not need the anechoic chamber), which by far simplifies the templates acquiring procedure. 展开更多
关键词 ultra-wide band channel model CLEAN algorithm CIR deconvolution.
下载PDF
Multiscale anisotropic diffusion for ringing artifact suppression in geophysical deconvolution data
5
作者 Boxin Zuo Xiangyun Hu Meixia Geng 《Earthquake Science》 CSCD 2016年第4期215-220,共6页
Ringing artifact degradations always appear in the deconvolution of geophysical data. To address this problem, we propose a postprocessing approach to suppress ringing artifacts that uses a novel anisotropic diffusion... Ringing artifact degradations always appear in the deconvolution of geophysical data. To address this problem, we propose a postprocessing approach to suppress ringing artifacts that uses a novel anisotropic diffusion based on a stationary wavelet transform (SWT) algorithm. In this paper, we discuss the ringing artifact suppression problem and analyze the characteristics of the deconvolu- tion ringing artifact. The deconvolution data containing ringing artifacts are decomposed into different SWT sub- bands for analysis, and a new multiscale adaptive aniso- tropic filter is developed to suppress these degradations. Finally, we demonstrate the performance of the proposed method and describe the experiments in detail. 展开更多
关键词 deconvolution Ringing artifacts Anisotropicdiffusion Stationary wavelet transform algorithm Multiscale
下载PDF
Unfolding analysis of LaBr3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration 被引量:12
6
作者 Rui Shi Xian-Guo Tuo +4 位作者 Huai-Liang Li Yang-Yang Xu Fan-Rong Shi Jian-Bo Yang Yong Luo 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第1期23-31,共9页
With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study... With respect to the gamma spectrum, the energy resolution improves with increase in energy. The counts of full energy peak change with energy, and this approximately complies with the Gaussian distribution. This study mainly examines a method to deconvolve the LaBr_3:Ce gamma spectrum with a detector response matrix constructing algorithm based on energy resolution calibration.In the algorithm, the full width at half maximum(FWHM)of full energy peak was calculated by the cubic spline interpolation algorithm and calibrated by a square root of a quadratic function that changes with the energy. Additionally, the detector response matrix was constructed to deconvolve the gamma spectrum. Furthermore, an improved SNIP algorithm was proposed to eliminate the background. In the experiment, several independent peaks of ^(152)Eu,^(137)Cs, and ^(60)Co sources were detected by a LaBr_3:Ce scintillator that were selected to calibrate the energy resolution. The Boosted Gold algorithm was applied to deconvolve the gamma spectrum. The results showed that the peak position difference between the experiment and the deconvolution was within ± 2 channels and the relative error of peak area was approximately within 0.96–6.74%. Finally, a ^(133) Ba spectrum was deconvolved to verify the efficiency and accuracy of the algorithm in unfolding the overlapped peaks. 展开更多
关键词 Detector response MATRIX Energy resolution CALIBRATION LaBr3:Ce scintillator SNIP background elimination Boosted Gold deconvolution algorithm
下载PDF
Toward real-time digital pulse process algorithms for CsI(Tl)detector array at external target facility in HIRFL-CSR 被引量:2
7
作者 Tao Liu Hai-Sheng Song +13 位作者 Yu-Hong Yu Duo Yan Zhi-Yu Sun Shu-Wen Tang Fen-Hua Lu Shi-Tao Wang Xue-Heng Zhang Xian-Qin Li Hai-Bo Yang Fang Fang Yong-Jie Zhang Shao-Bo Ma Hooi-Jin Ong Cheng-Xin Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第9期8-20,共13页
A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To pr... A fully digital data acquisition system based on a field-programmable gate array(FPGA) was developed for a CsI(Tl) array at the external target facility(ETF) in the Heavy Ion Research Facility in Lanzhou(HIRFL). To process the CsI(Tl) signals generated by γ-rays and light-charged ions, a scheme for digital pulse processing algorithms is proposed. Every step in the algorithms was benchmarked using standard γ and α sources. The scheme, which included a moving average filter, baseline restoration, leading-edge discrimination, moving window deconvolution, and digital charge comparison, was subsequently implemented on the FPGA. A good energy resolution of 5.7% for 1.33-MeV γ-rays and excellent α-γ identification using the digital charge comparison method were achieved, which satisfies CsI(Tl) array performance requirements. 展开更多
关键词 CsI(Tl)array On-line digital algorithms Moving average filter Moving window deconvolution On-line particle identification algorithms
下载PDF
EFFECT OF MULTIPATH CHANNEL MODELS TO THE RECOVERY ALGORITHMS ON COMPRESSED SENSING IN UWB CHANNEL ESTIMATION
8
作者 Nguyen ThanhSon Guo Shuxu Chen Haipeng 《Journal of Electronics(China)》 2013年第3期254-260,共7页
Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse respon... Multipath arrivals in an Ultra-WideBand (UWB) channel have a long time intervals between clusters and rays where the signal takes on zero or negligible values. It is precisely the signal sparsity of the impulse response of the UWB channel that is exploited in this work aiming at UWB channel estimation based on Compressed Sensing (CS). However, these multipath arrivals mainly depend on the channel environments that generate different sparse levels (low-sparse or high-sparse) of the UWB channels. According to this basis, we have analyzed the two most basic recovery algorithms, one based on linear programming Basis Pursuit (BP), another using greedy method Orthogonal Matching Pursuit (OMP), and chosen the best recovery algorithm which are suitable to the sparse level for each type of channel environment. Besides, the results of this work is an open topic for further research aimed at creating a optimal algorithm specially for application of CS based UWB systems. 展开更多
关键词 Compressed Sensing (CS) ultra-wideband (UWB) system Recovery algorithms Multipath channel
下载PDF
基于改进VMD-MCKD和深度残差网络的风机齿轮箱故障诊断 被引量:3
9
作者 蔡昌春 何捷 +2 位作者 承敏钢 张能文 王全凯 《山东电力技术》 2024年第2期67-78,共12页
行星齿轮箱是风电机组传动系统中的重要部件,其运行工况复杂,背景噪声大,导致齿轮早期故障信号微弱且极易受背景噪声的影响。针对风电机组齿轮箱早期故障特征难以有效提取,齿轮故障难以识别的问题,提出一种风机齿轮箱故障诊断方法。首先... 行星齿轮箱是风电机组传动系统中的重要部件,其运行工况复杂,背景噪声大,导致齿轮早期故障信号微弱且极易受背景噪声的影响。针对风电机组齿轮箱早期故障特征难以有效提取,齿轮故障难以识别的问题,提出一种风机齿轮箱故障诊断方法。首先,通过变分模态分解算法(variational mode decomposition,VMD)分解风机齿轮箱原始振动信号,获得振动信号故障的最优模态分量;接着,利用最大相关峭度解卷积算法(maximum correlated kurtosis decnvolution,MCKD)通过解卷积重构最优模态分量,削弱背景噪声增强故障冲击成分,获得故障特征;同时利用麻雀搜索算法(sparrow search algorithm,SSA)优化惩罚因子α、模态分解个数K、滤波器阶数L和反褶积周期T等参数,提升振动信号故障特征提取的准确度;最后,构建基于深度残差网络(deep residual network,ResNet)的齿轮箱故障诊断模型,建立齿轮箱故障特征与类别的非线性映射关系,实现风机齿轮箱故障分类识别。实验结果表明,所提风机齿轮箱故障诊断方法的准确率达到97.48%,相较其他方法在信号特征提取和故障诊断效率方面有明显提高。 展开更多
关键词 齿轮故障诊断 变分模态分解 最大相关峭度解卷积 深度残差网络 麻雀搜索算法
下载PDF
基于改进FISTA的高分辨率声源定位方法
10
作者 邓如朝 杨祥国 +4 位作者 李昌伟 张梦如 陈宁芳 杨萍 李昕 《声学技术》 CSCD 北大核心 2024年第3期440-450,共11页
为提高快速迭代收缩阈值算法(Fast Iterative Shrinkage-Thresholding Algorithm,FISTA)在反卷积波束形成中的空间分辨率以及计算速度,采用基于快速傅里叶变换的声学模型,引入过松弛方法和“贪婪”重启策略,提出两种改进的快速迭代收缩... 为提高快速迭代收缩阈值算法(Fast Iterative Shrinkage-Thresholding Algorithm,FISTA)在反卷积波束形成中的空间分辨率以及计算速度,采用基于快速傅里叶变换的声学模型,引入过松弛方法和“贪婪”重启策略,提出两种改进的快速迭代收缩阈值算法,即基于快速傅里叶变换的过松弛单调快速迭代收缩阈值算法(Over-relaxed Monotone Fast Iterative Shrinkage-Thresholding Algorithm based on Fast Fourier Transform,FFT-OMFISTA)和基于快速傅里叶变换的“贪婪”快速迭代收缩阈值算法("Greedy"Fast Iterative Shrinkage-Thresholding Algorithm based on Fast Fourier Transform,FFT-GFISTA),并应用于反卷积波束形成的求解过程中。设计了单声源和双声源的仿真与实验,验证了所提算法的有效性与优越性。结果表明,两种所提算法都具有良好的性能,都能在声源定位中实现更高的空间分辨率以及更快的计算速度。 展开更多
关键词 声源定位 反卷积 波束形成 快速迭代收缩阈值算法(FISTA) 麦克风阵列
下载PDF
小尺度物体内部多磁源反演技术
11
作者 荀宇洁 姜春宇 +3 位作者 王逸群 张宝顺 曾中明 吴东岷 《科学技术与工程》 北大核心 2024年第25期10808-10814,共7页
为解决对小尺度物体内部多个磁场源反演能力差的问题,提出了小尺度物体内部多磁源反演技术。利用原子磁强计采集磁源信号,基于弱磁理论反演磁源分布,引入分布源模型、高斯-赛德尔迭代算法优化求解过程,开展正反演模型验证。同时,采用点... 为解决对小尺度物体内部多个磁场源反演能力差的问题,提出了小尺度物体内部多磁源反演技术。利用原子磁强计采集磁源信号,基于弱磁理论反演磁源分布,引入分布源模型、高斯-赛德尔迭代算法优化求解过程,开展正反演模型验证。同时,采用点源模型去卷积操作提升磁源的空间分辨率,去卷积前系统空间分辨率约为10 mm,去卷积后小于4 mm。结果显示磁源反演的空间位置分布大致接近真实,验证了反演技术的正确性,可用于精密仪器内部磁源的识别应用。该研究开辟了部分精密仪器内部多磁源探测的新途径。 展开更多
关键词 磁源分布 磁源反演系统 分布源模型 高斯-赛德尔迭代算法 去卷积
下载PDF
极坐标系快速反卷积高分辨声图测量方法
12
作者 孙大军 黄天凤 +1 位作者 梅继丹 崔文婷 《声学学报》 EI CAS CSCD 北大核心 2024年第5期967-978,共12页
二维反卷积声图测量中点扩散函数(PSF)的二维移变性导致算法计算量较大,为此提出了一种极坐标系下方位、距离分离降维处理的快速反卷积声图测量方法。该方法将二维移变反卷积运算转换为两次一维反卷积运算,同时利用方位维反卷积具有近... 二维反卷积声图测量中点扩散函数(PSF)的二维移变性导致算法计算量较大,为此提出了一种极坐标系下方位、距离分离降维处理的快速反卷积声图测量方法。该方法将二维移变反卷积运算转换为两次一维反卷积运算,同时利用方位维反卷积具有近似一维空域移不变特点,采用移不变模型进行计算,仅对距离维进行一维移变反卷积运算,从而减少算法的PSF存储空间和计算量。仿真和实验数据处理结果表明,所提方法显著降低了计算量,且与原二维移变模型反卷积声图测量方法的性能相近。 展开更多
关键词 声图测量 无源定位 聚焦波束形成 反卷积快速算法
下载PDF
改进融合指标的新型盲解卷积算法在轴承故障诊断中的应用
13
作者 田甜 唐贵基 +1 位作者 田寅初 王晓龙 《噪声与振动控制》 CSCD 北大核心 2024年第1期162-167,共6页
为解决现有盲解卷积算法易受随机脉冲影响的问题,综合时域特征和频域特征,提出一个新的故障敏感指标,即包络谱峭度-包络基尼系数融合指标(Envelope Spectral Kurtosis-envelope Gini Index,ESKEG)。该指标对周期性脉冲更敏感,不易受随... 为解决现有盲解卷积算法易受随机脉冲影响的问题,综合时域特征和频域特征,提出一个新的故障敏感指标,即包络谱峭度-包络基尼系数融合指标(Envelope Spectral Kurtosis-envelope Gini Index,ESKEG)。该指标对周期性脉冲更敏感,不易受随机脉冲的影响。基于该指标,提出一个新的解卷积算法,即基于最大ESKEG的盲解卷积,并采用粒子群算法(Particle Swarm Optimization,PSO)求解滤波器系数。通过仿真振动信号和实验仿真信号进行验证,结果表明相比于其他盲解卷积算法,所提出的PSO-ESKEG算法在故障先验知识未知的情况下,能更有效避免受到随机脉冲信号的影响。 展开更多
关键词 故障诊断 盲解卷积 包络谱峭度-包络基尼系数 粒子群优化 随机脉冲
下载PDF
基于迭代SGMD与改进MOMEDA的滚动轴承微弱故障诊断
14
作者 王富珂 高丙朋 蔡鑫 《组合机床与自动化加工技术》 北大核心 2024年第12期145-150,157,共7页
针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭... 针对强背景噪声下滚动轴承故障特征微弱的问题,提出一种基于迭代辛几何模态分解(ISGMD)与改进多点最优最小熵解卷积调整(IMOMEDA)相结合的故障诊断方法。首先,利用ISGMD对故障信号进行分解并基于综合指标选取最优分量;其次,根据多点峭度谱确定MOMEDA的故障周期,利用白鹭群优化算法(ESOA)对滤波器长度进行自适应寻优,通过IMOMEDA对最优分量进行解卷积处理;最后,对解卷积处理后的信号进行包络谱分析,提取故障特征频率完成故障诊断。仿真及实验分析结果表明,所提方法能有效提取强背景噪声下的滚动轴承微弱故障特征信息。 展开更多
关键词 滚动轴承 迭代辛几何模态分解 改进多点最优最小熵解卷积调整 综合指标 白鹭群优化算法 故障诊断
下载PDF
Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization
15
作者 Yan Wang You Lu +1 位作者 Yuqing Zhou Zhijian Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2673-2703,共31页
Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy cri... Indoor positioning is a key technology in today’s intelligent environments,and it plays a crucial role in many application areas.This paper proposed an unscented Kalman filter(UKF)based on the maximum correntropy criterion(MCC)instead of the minimummean square error criterion(MMSE).This innovative approach is applied to the loose coupling of the Inertial Navigation System(INS)and Ultra-Wideband(UWB).By introducing the maximum correntropy criterion,the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise,thus enhancing its adaptability to diverse environmental localization requirements.Particularly in the presence of non-Gaussian noise,especially heavy-tailed noise,the MCCUKF exhibits superior accuracy and robustness compared to the traditional UKF.The method initially generates an estimate of the predicted state and covariance matrix through the unscented transform(UT)and then recharacterizes the measurement information using a nonlinear regression method at the cost of theMCC.Subsequently,the state and covariance matrices of the filter are updated by employing the unscented transformation on the measurement equations.Moreover,to mitigate the influence of non-line-of-sight(NLOS)errors positioning accuracy,this paper proposes a k-medoid clustering algorithm based on bisection k-means(Bikmeans).This algorithm preprocesses the UWB distance measurements to yield a more precise position estimation.Simulation results demonstrate that MCCUKF is robust to the uncertainty of UWB and realizes stable integration of INS and UWB systems. 展开更多
关键词 Maximum correntropy criterion unscented Kalman filter inertial navigation system ultra-wideband bisecting kmeans clustering algorithm
下载PDF
基于优化VMD-MCKD和谱峭度的滚动轴承复合故障诊断
16
作者 王富珂 高丙朋 《机床与液压》 北大核心 2024年第19期196-202,共7页
针对滚动轴承振动信号中复合故障特征难以准确提取而导致故障诊断困难的问题,提出一种基于优化变分模态分解(VMD)和最大相关峭度解卷积(MCKD)结合快速谱峭度算法的滚动轴承复合故障诊断方法。利用改进麻雀搜索算法(ISSA)优化VMD和MCKD... 针对滚动轴承振动信号中复合故障特征难以准确提取而导致故障诊断困难的问题,提出一种基于优化变分模态分解(VMD)和最大相关峭度解卷积(MCKD)结合快速谱峭度算法的滚动轴承复合故障诊断方法。利用改进麻雀搜索算法(ISSA)优化VMD和MCKD的参数,使用优化后的VMD对复合故障信号进行分解,并根据峭度准则筛选有效本征模态函数(IMF)进行信号重构,使用优化后的MCKD对重构信号进行解卷积与故障特征增强,并对解卷积信号进行包络谱分析提取故障特征频率。利用快速谱峭度算法对未提取出故障特征频率的解卷积信号进行处理,得到故障信息最丰富的频带参数并进行带通滤波处理。最后,对滤波后的信号进行包络谱分析,提取故障特征频率,从而实现故障诊断。仿真及实验结果表明:所提方法能有效分离复合故障并提取出故障特征频率,有效实现了复合故障诊断。 展开更多
关键词 复合故障 变分模态分解 最大相关峭度解卷积 快速谱峭度 改进麻雀搜索算法
下载PDF
基于自适应参数优化RSSD-CYCBD的行星齿轮箱复合故障诊断
17
作者 孙环宇 杨志鹏 +1 位作者 王艺玮 郭琦 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第10期3139-3150,共12页
针对行星齿轮箱多振源耦合导致故障源辨识困难、较弱故障特征容易被噪声和较强故障特征掩盖,以及由传播路径引起的信号衰减导致的故障特征微弱等问题,提出一种自适应参数优化的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的... 针对行星齿轮箱多振源耦合导致故障源辨识困难、较弱故障特征容易被噪声和较强故障特征掩盖,以及由传播路径引起的信号衰减导致的故障特征微弱等问题,提出一种自适应参数优化的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的行星齿轮箱多故障耦合信号分离及诊断算法。根据轴承和齿轮故障的不同共振属性,用RSSD算法将多故障耦合信号分解为包含齿轮故障特征的高共振分量和主要包含轴承故障特征的低共振分量后,通过CYCBD算法分别对高、低分量进行解卷积,消除传播路径影响和噪声干扰,实现微弱故障特征的增强和提取。特别地,针对RSSD和CYCBD中参数优化困难、依赖人工经验和自适应差等问题,使用基于松鼠算法(SSA)对参数进行自适应优化选取,设计了融合包络谱峭度、自相关函数最大值均方根和特征频率比在内的复合指标作为优化目标。对解卷积后的信号进行包络解调提取故障特征频率,识别不同故障源。通过行星齿轮箱多故障模拟信号和实测信号验证了所提算法的有效性和可行性,进一步地,将所提算法集成在边缘计算设备中,为行星齿轮箱等旋转机械的状态检测诊断及远程运维提供解决方案。 展开更多
关键词 多源故障分离 共振稀疏分解 最大二阶循环平稳盲解卷积 松鼠算法 行星齿轮箱
下载PDF
基于参数自适应的RSSD-CYCBD及在轴承外圈故障特征提取中的应用
18
作者 刘晖 姚德臣 +1 位作者 杨建伟 魏明辉 《机电工程》 CAS 北大核心 2024年第5期836-844,共9页
针对滚动轴承工作环境复杂、故障特征信号易被高强度噪声掩盖的问题,提出了基于参数自适应的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的滚动轴承故障诊断方法。首先,利用人工大猩猩部队优化算法(GTO),结合相关系数与相关... 针对滚动轴承工作环境复杂、故障特征信号易被高强度噪声掩盖的问题,提出了基于参数自适应的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的滚动轴承故障诊断方法。首先,利用人工大猩猩部队优化算法(GTO),结合相关系数与相关峭度的融合指标,自适应选择RSSD分解参数,得到了仿真信号的最优低共振分量;然后,利用GTO结合包络熵,自适应选择CYCBD的循环频率和滤波器长度,对最优低共振分量进行了解卷积运算,从包络谱中获得了信号的故障特征频率;最后,利用美国凯斯西储大学试验台和MFS-MG机械故障综合模拟试验台数据,综合验证了该方法的有效性,并将试验结果与RSSD-MCKD方法的结果进行了对比。研究结果表明,该方法能够准确地得到仿真信号的故障频率为20 Hz、美国凯斯西储大学试验台近似故障频率为107.5 Hz、MFS-MG试验台近似故障频率为87.6 Hz。自适应RSSD-CYCBD方法能够有效地识别出故障特征频率及其倍频,实现滚动轴承故障诊断的目的。 展开更多
关键词 滚动轴承 故障诊断 共振稀疏分解 最大二阶循环平稳盲反卷积 人工大猩猩部队优化算法 包络熵 高强度噪声
下载PDF
融合残差反卷积的图像分割算法研究 被引量:1
19
作者 何松 唐程华 陈鑫 《福建电脑》 2024年第5期1-5,共5页
针对FCN算法在处理复杂场景时出现误分割问题,本文提出一种融合残差反卷积的图像分割算法RDM-FCN。在编码器部分,采用VGG16网络来提取图像特征;在解码器部分,通过构建残差反卷积模块和引入残差连接,以增强跨层特征的传递。通过采用交叉... 针对FCN算法在处理复杂场景时出现误分割问题,本文提出一种融合残差反卷积的图像分割算法RDM-FCN。在编码器部分,采用VGG16网络来提取图像特征;在解码器部分,通过构建残差反卷积模块和引入残差连接,以增强跨层特征的传递。通过采用交叉熵损失函数,提升模型的分割精度。测试结果显示,本文算法与FCN算法相比较,准确率提高了0.0347,平均交并比提高了0.0215,平均像素准确率提高了0.005。实验结果表明,本文算法的分割精度较高,能够较好地保留物体边缘和细节部分的信息。 展开更多
关键词 FCN网络 图像分割 残差反卷积 算法
下载PDF
基于基尼的深度解卷积方法在机械装备故障诊断中的应用研究
20
作者 石惠芳 苗永浩 夏雨 《工业工程》 2024年第4期9-18,共10页
解卷积方法是机械装备故障诊断的有力工具,但传统研究仍属于浅层特征提取,难以处理极低信噪比情况。针对此问题,在传统解卷积理论的基础上引入特征学习思想,提出一种基于基尼指数(Gini index,GI)的稀疏特征深度解卷积方法(GI-based spar... 解卷积方法是机械装备故障诊断的有力工具,但传统研究仍属于浅层特征提取,难以处理极低信噪比情况。针对此问题,在传统解卷积理论的基础上引入特征学习思想,提出一种基于基尼指数(Gini index,GI)的稀疏特征深度解卷积方法(GI-based sparse deep deconvolution,GI-SDD)进行机械装备早期故障诊断。采用频带均分策略初始化输入层滤波器,为后续解卷提供方向。以能够表征机械故障稀疏特征的GI作为损失函数,指导深度网络进行训练。基于广义的特征向量法(eigenvector algorithm,EVA)执行权重优化,进而对微弱故障特征进行逐层学习。利用相关系数和包络谱峭度(envelope kurtosis,EK)准则联合评价故障信息,降维输出最为显著的故障分量。经仿真分析及试验验证,所提方法对背景噪声具有强鲁棒性,故障特征得到显著加强,其EK值相较于传统MED和MGID结果分别提升163.43%和187.11%。 展开更多
关键词 基尼指数 特征向量法 深度解卷积 特征学习 故障诊断
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部