EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linea...EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution.展开更多
Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency ...Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance.展开更多
基金This work was supported by Chinese Postdoctoral Science Foundation (2012M512098), Science and Technology Research Project of Shaanxi Province (2012K13-02-10), the National Science & Technology Pillar Program (2011BAI08B13 and 2012BAI20B02), Military Program (AWS 11 C010-8).
文摘EIT (electrical impedance tomography) problem should be represented by a group of partial differential equation, in numerical calculation: the nonlinear problem should be linearization approximately, and then linear equations set is obtained, so EIT image reconstruct problem should be considered as a classical ill-posed, ill-conditioned, linear inverse problem. Its biggest problem is the number of unknown is much more than the number of the equations, this result in the low imaging quality. Especially, it can not imaging in center area. For this problem, we induce the CS technique into EIT image reconstruction algorithm. The main contributions in this paper are: firstly, built up the relationship between CS and EIT definitely; secondly, sparse reconstruction is a critical step in CS, built up a general sparse regularization model based on EIT; finally, gives out some EIT imaging models based on sparse regularization method. For different scenarios, compared with traditional Tikhonov regularization (smooth regularization) method, sparse reconstruction method is not only better at anti-noise, and imaging in center area, but also faster and better resolution.
基金the National Natural Science Foundation of China(NSFC)(61675021)the Fundamental Research Funds for the Central Universities(2018CX01025).
文摘Source and mask joint optimization(SMO)is a widely used computational lithography method for state-of-the-art optical lithography process to improve the yield of semiconductor wafers.Nowadays,computational efficiency has become one of the most challenging issues for the development of pixelated SMO techniques.Recently,compressive sensing(CS)theory has be explored in the area of computational inverse problems.This paper proposes a CS approach to improve the computational efficiency of pixel-based SMO algorithms.To our best knowledge,this paper is the first to develop fast SMO algorithms based on the CS framework.The SMO workflow can be separated into two stages,i.e.,source optimization(SO)and mask optimization(MO).The SO and MO are formulated as the linear CS and nonlinear CS reconstruction problems,respectively.Based on the sparsity representation of the source and mask patterns on the predefined bases,the SO and MO procedures are implemented by sparse image reconstruction algorithms.A set of simulations are presented to verify the proposed CS-SMO methods.The proposed CS-SMO algorithms are shown to outperform the traditional gradient-based SMO algorithm in terms of both computational efficiency and lithography imaging performance.
基金国家重点研发计划政府间国际创新合作重点专项(2017YFE0118700)欧盟H2020地平线Research and Innovation Program Under The Marie Skodowska-Curie Grant专项(FIRST734599)上海第二工业大学机械工程学科建设项目(XXKZD1603)