The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province...The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province, China. In order to distinguish the temperature range of cluster inclusions from different mineralization stages and measure their compositions, 16 fluid inclusions and 5 isotopic geochemistry samples were collected for this study. Corresponding to different mineralization stages, the multirange peaks of quartz decrepitation temperature (250-270, 310-360 and 380-430℃) indicate that the activity of ore-forming fluids is characterized by multistage. The ore-forming fluids were predominantly of high-temperature fluid system (HTFS) by CO2-rich, and SO4^2--K^+ type magmatic fluid during the early stage of mineralization and were subsequently affected by low-temperature fluid system (LTFS) of CH4-rich, and Cl^--Na^+/Ca^2+ type meteoric fluid during the late stage of mineralization. Gold is transferred by Au-HS^- complex in the HTFS, and Au-Cl^- complex can be more important in the LTFS. The transition of fluids from deeper to shallow environments results in mixing between the HTFS and LTFS, which might be one of the most key reasons for gold precipitation and large-scale mineralization. The ore-forming fluids are characterized by high-temperature, strong-activity, and superimposed mineralization, so that there is a great probability of forming large and rich ore deposit in the Damoqujia gold deposit. The main bodies are preserved and extend toward deeper parts, thereby suggesting a great potential in future.展开更多
The behavior of hydrogen absorption and release in hydrogen decrepitation (HD) process of Nd Fe B alloys were investigated. The results reveal that the reactivity and the amount of hydrogen absorption in HD process ...The behavior of hydrogen absorption and release in hydrogen decrepitation (HD) process of Nd Fe B alloys were investigated. The results reveal that the reactivity and the amount of hydrogen absorption in HD process are related to the surface activity of the alloy so that the fresh and active surface has a higher efficiency. The presence of Nd rich phase at the grain boundary is an essential factor of the HD activity of the alloy at room temperature. On degassing, hydrogen is released from the HD powder continuously with increasing temperature. And the residual hydrogen is as low as 0 0015% at 1073 K, which shows that the hydrogen is almost exhaused. It is feasible to remove the hydrogen from the HD powder by heating treatment at the temperature of 523~723 K for 1 h prior to the magnetic field forming in order to decrease the harmful effect of hydrogen on the easy axis alignment of HD magnet.展开更多
Hydrogen decrepitation and desorption of the Nd16Fe76B8 magnet are studied by X-ray diffraction analysis and Fe Mossbauer spectroscopy. The results of the as-cast alloy samples treated under various hydrogen gas press...Hydrogen decrepitation and desorption of the Nd16Fe76B8 magnet are studied by X-ray diffraction analysis and Fe Mossbauer spectroscopy. The results of the as-cast alloy samples treated under various hydrogen gas pressures at various temperatures are reported. A special hydrogenation- dehydrogenation treatment of the Nd- Fe- B cast alloy can produce excellent isotropic magnet powders and the treated sample has passed a hydrogenation- disproportion- recombination process. The effect of the presence of α- Fe in magnet powders is discussed.展开更多
1.IntroductionThe rhombohedral compoundSmFeN(x=1~3)is currently attractinginterest due to its promise as a new perma-nent magnet material.Its magnetic proper-ties have been investigated in details.TheSm-Fe-N material...1.IntroductionThe rhombohedral compoundSmFeN(x=1~3)is currently attractinginterest due to its promise as a new perma-nent magnet material.Its magnetic proper-ties have been investigated in details.TheSm-Fe-N materials with quite good mag-展开更多
The 2008-05-12 Wenchuan mud-volcano-earthquake was accompanied with eruption of a huge volume of gas and stone,revealing that earthquakes generally result from instant reverse phase explosion of supercritical water(SC...The 2008-05-12 Wenchuan mud-volcano-earthquake was accompanied with eruption of a huge volume of gas and stone,revealing that earthquakes generally result from instant reverse phase explosion of supercritical water(SCW) at the supercritical point.In the deep parts of the crust and mantle there still exists a large amount of supercritical water equivalent in order of magnitude to that of the Earth's hydrosphere.Soft fluids which exist in the MOHO at the top of the upper mantle are the so-called deep supercritical fluids(SCWD).Supercritical water(SCW) has n×103 times strong capability to dissolve gas.Its viscosity is extremely low and its diffusivity is extremely strong.Therefore,it can naturally migrate toward a region with relatively negative pressure.In the steep break zone of the MOHO at the 57-65 km depth beneath the earthquake belt,due to mutation of overburden pressure,SCWD can automatically separate out CaSiO3 and other inorganic salts,evolving into the SCW(H2O-CO2-CH4O system.In going upwards to the 10-20-km depth of the crust SCW will be accumulated as an earthquake-pregnant reservoir in the broken terrain.The phase-transition heat of SCW is estimated at 606.62 kJ/kg and the reverse phasing kinetic energy is 2350.8 kJ/kg.When automatic exhaust at the time of decompression reaches the critical pressure(Pc),the instant explosion reverse phase will be normal-state air water.It will release a huge volume of energy and high-kinetic-energy gas which has been expanded by a factor of 1000,leading to the breaking of the country rocks overlying the earthquake-pregnant reservoir,thus giving rise to a Ms 8.0 earthquake.As a result,there were formed eruptive and air-driven(pneumatic) debris flows whose volumatric flow rate reaches n×1014 m3/s,and their force greatly exceeds the power of INT explosive of the same equivalent value.展开更多
Utilizing ultrafine iron ore concentrate for pellet production can expand domestic iron ore resources in China and promote the utilization of low-grade ores.However,a challenge arises with the low decrepitation temper...Utilizing ultrafine iron ore concentrate for pellet production can expand domestic iron ore resources in China and promote the utilization of low-grade ores.However,a challenge arises with the low decrepitation temperature and reducibility in the preparation process of ultrafine iron ore concentrate pellets.To address the challenge,a novel approach was proposed,which incorporated straw powder as an additive to enhance pellet porosity,thereby improving the decrepitation temper-ature and reducibility of ultrafine iron ore concentrate pellets.The effect of varying proportions of straw powder(0.0-2.0%)on the characteristics of ultrafine iron ore concentrate pellets was examined.Results indicate that at a 2.0%straw powder ratio,pellet decrepitation temperature notably rises from 380 to 540℃,while the reducibility index escalates from 25.7%to 48.1%.Nevertheless,the addition of straw powder results in diminished drop strength,compressive strength of green pellets,and cold crushing strength of fired pellets.In addition,enhanced pellet reducibility leads to exacerbated reduction swelling index and reduction degradation index.Despite these effects,all parameters remain within an acceptable range.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 40672064, 40572063)the 973-Project (No. 2006CB403506)Changjiang Scholars and Innovative Research Team in University and 111 Project of the Ministry of Education, China (No. B07011)
文摘The recently discovered Damoqujia (大磨曲家) gold deposit is a large shear zone-hosted gold deposit of disseminated sulphides located in the north of the Zhaoping (招平) fault zone, Jiaodong (胶东) gold province, China. In order to distinguish the temperature range of cluster inclusions from different mineralization stages and measure their compositions, 16 fluid inclusions and 5 isotopic geochemistry samples were collected for this study. Corresponding to different mineralization stages, the multirange peaks of quartz decrepitation temperature (250-270, 310-360 and 380-430℃) indicate that the activity of ore-forming fluids is characterized by multistage. The ore-forming fluids were predominantly of high-temperature fluid system (HTFS) by CO2-rich, and SO4^2--K^+ type magmatic fluid during the early stage of mineralization and were subsequently affected by low-temperature fluid system (LTFS) of CH4-rich, and Cl^--Na^+/Ca^2+ type meteoric fluid during the late stage of mineralization. Gold is transferred by Au-HS^- complex in the HTFS, and Au-Cl^- complex can be more important in the LTFS. The transition of fluids from deeper to shallow environments results in mixing between the HTFS and LTFS, which might be one of the most key reasons for gold precipitation and large-scale mineralization. The ore-forming fluids are characterized by high-temperature, strong-activity, and superimposed mineralization, so that there is a great probability of forming large and rich ore deposit in the Damoqujia gold deposit. The main bodies are preserved and extend toward deeper parts, thereby suggesting a great potential in future.
文摘The behavior of hydrogen absorption and release in hydrogen decrepitation (HD) process of Nd Fe B alloys were investigated. The results reveal that the reactivity and the amount of hydrogen absorption in HD process are related to the surface activity of the alloy so that the fresh and active surface has a higher efficiency. The presence of Nd rich phase at the grain boundary is an essential factor of the HD activity of the alloy at room temperature. On degassing, hydrogen is released from the HD powder continuously with increasing temperature. And the residual hydrogen is as low as 0 0015% at 1073 K, which shows that the hydrogen is almost exhaused. It is feasible to remove the hydrogen from the HD powder by heating treatment at the temperature of 523~723 K for 1 h prior to the magnetic field forming in order to decrease the harmful effect of hydrogen on the easy axis alignment of HD magnet.
文摘Hydrogen decrepitation and desorption of the Nd16Fe76B8 magnet are studied by X-ray diffraction analysis and Fe Mossbauer spectroscopy. The results of the as-cast alloy samples treated under various hydrogen gas pressures at various temperatures are reported. A special hydrogenation- dehydrogenation treatment of the Nd- Fe- B cast alloy can produce excellent isotropic magnet powders and the treated sample has passed a hydrogenation- disproportion- recombination process. The effect of the presence of α- Fe in magnet powders is discussed.
文摘1.IntroductionThe rhombohedral compoundSmFeN(x=1~3)is currently attractinginterest due to its promise as a new perma-nent magnet material.Its magnetic proper-ties have been investigated in details.TheSm-Fe-N materials with quite good mag-
文摘The 2008-05-12 Wenchuan mud-volcano-earthquake was accompanied with eruption of a huge volume of gas and stone,revealing that earthquakes generally result from instant reverse phase explosion of supercritical water(SCW) at the supercritical point.In the deep parts of the crust and mantle there still exists a large amount of supercritical water equivalent in order of magnitude to that of the Earth's hydrosphere.Soft fluids which exist in the MOHO at the top of the upper mantle are the so-called deep supercritical fluids(SCWD).Supercritical water(SCW) has n×103 times strong capability to dissolve gas.Its viscosity is extremely low and its diffusivity is extremely strong.Therefore,it can naturally migrate toward a region with relatively negative pressure.In the steep break zone of the MOHO at the 57-65 km depth beneath the earthquake belt,due to mutation of overburden pressure,SCWD can automatically separate out CaSiO3 and other inorganic salts,evolving into the SCW(H2O-CO2-CH4O system.In going upwards to the 10-20-km depth of the crust SCW will be accumulated as an earthquake-pregnant reservoir in the broken terrain.The phase-transition heat of SCW is estimated at 606.62 kJ/kg and the reverse phasing kinetic energy is 2350.8 kJ/kg.When automatic exhaust at the time of decompression reaches the critical pressure(Pc),the instant explosion reverse phase will be normal-state air water.It will release a huge volume of energy and high-kinetic-energy gas which has been expanded by a factor of 1000,leading to the breaking of the country rocks overlying the earthquake-pregnant reservoir,thus giving rise to a Ms 8.0 earthquake.As a result,there were formed eruptive and air-driven(pneumatic) debris flows whose volumatric flow rate reaches n×1014 m3/s,and their force greatly exceeds the power of INT explosive of the same equivalent value.
基金support from the National Natural Science Foundation of China(No.U1860113)for providing funding to complete the experiments.
文摘Utilizing ultrafine iron ore concentrate for pellet production can expand domestic iron ore resources in China and promote the utilization of low-grade ores.However,a challenge arises with the low decrepitation temperature and reducibility in the preparation process of ultrafine iron ore concentrate pellets.To address the challenge,a novel approach was proposed,which incorporated straw powder as an additive to enhance pellet porosity,thereby improving the decrepitation temper-ature and reducibility of ultrafine iron ore concentrate pellets.The effect of varying proportions of straw powder(0.0-2.0%)on the characteristics of ultrafine iron ore concentrate pellets was examined.Results indicate that at a 2.0%straw powder ratio,pellet decrepitation temperature notably rises from 380 to 540℃,while the reducibility index escalates from 25.7%to 48.1%.Nevertheless,the addition of straw powder results in diminished drop strength,compressive strength of green pellets,and cold crushing strength of fired pellets.In addition,enhanced pellet reducibility leads to exacerbated reduction swelling index and reduction degradation index.Despite these effects,all parameters remain within an acceptable range.