This paper describes current situation and special requirements of local electric power communication network in China. The paper discusses the disadvantages of SDH and fiber loop carrier system applied to electric po...This paper describes current situation and special requirements of local electric power communication network in China. The paper discusses the disadvantages of SDH and fiber loop carrier system applied to electric power communication network. It presents a new Communication System-IDS-2000 integrated digital communication system. The paper introduces the characteristics and application of IDS-2000 system in the local electric power communication network.展开更多
车载网VANET是一种应用于智能交通系统的新型无线移动自组织网络(mobile ad hoc network,MANET).随着车辆以及移动ad hoc网络技术的发展,车载网已经成为一个新兴的研究领域.针对VANET中车辆行驶的特征,提出一种拓扑相对稳定的车辆分簇算...车载网VANET是一种应用于智能交通系统的新型无线移动自组织网络(mobile ad hoc network,MANET).随着车辆以及移动ad hoc网络技术的发展,车载网已经成为一个新兴的研究领域.针对VANET中车辆行驶的特征,提出一种拓扑相对稳定的车辆分簇算法.在此算法基础上,根据专用短程通信(dedicated short range communication,DSRC)标准中控制信道(control channel,CCH)和服务信道(service channel,SCH)的分配,考虑车辆间的无线通信干扰和不同应用的QoS需求,提出一种基于分簇的多信道混合型MAC协议,簇内通信采用非竞争的TDMA机制,簇间通信采用基于竞争的CSMA?CA机制,相邻簇采用不同的服务信道.模拟实验表明,提出的MAC协议在同时满足实时应用的延迟需求和非实时应用的吞吐量方面,优于现有协议.展开更多
Recently,the importance of vehicle safety supporting system has been highlighted as autonomous driving and platooning has attracted the researchers.To ensure driving safety,each vehicle must broadcast a basic safety m...Recently,the importance of vehicle safety supporting system has been highlighted as autonomous driving and platooning has attracted the researchers.To ensure driving safety,each vehicle must broadcast a basic safety message(BSM)every 100 ms.However,stable BSM exchange is difficult because of the changing environment and limited bandwidth of vehicular wireless communication.The increasing number of vehicles on the road increases the competition to access wireless networks for BSM exchange;this increases the packet collision rate.An increased packet collision rate impairs the transmission and reception of BSM information,which can easily cause a traffic accident.We propose a solution,the vehicular safety support system(V3S),which exchanges BSMs reliably even when many vehicles are on the road.The V3S uses a clustering scheme to decrease network traffic by reducing the amount of data exchanged between a vehicle and the roadside unit(RSU).In addition,the V3S reduces the collision rate of wireless network packets by broadcasting the vehicle’s BSM in an allocated timeslot using the time division multiple access(TDMA)MAC protocol.The V3S also deals with insufficient bandwidth for dedicated short-range communications(DSRC)by changing DSRC channels according to traffic flow.In evaluating the packet error rate for stable BSM packet delivery,the V3S demonstrates an excellent packet error rate of less than 1%,compared to the 802.11p with its packet error rate of 82%.展开更多
Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication net...Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.展开更多
Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so ...Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.展开更多
The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of d...The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.展开更多
The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system usi...The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system using Intelligent Transportation System(ITS)along with the limitation of personal vehicles using sharing economy model.The SUT Smart Transit is utilized as a major public transportation system,while MoreSai@SUT(electric motorcycle services)is a minor public transportation system in this work.They are called Multi-Mode Transportation system as a combination.Moreover,a Vehicle toNetwork(V2N)is used for developing theMulti-Mode Transportation system in the campus.Due to equipping vehicles with On Board Unit(OBU)and 4G LTE modules,the real time speed and locations are transmitted to the cloud.The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival(ETA).In terms of vehicle classifications and counts,we deployed CCTV cameras,and the recorded videos are analyzed by using You Only Look Once(YOLO)algorithm.The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed.Contrary to the existing researches,the proposed system is implemented in the real environment.The final results unveil the attractiveness and satisfaction of users.Also,due to the proposed system,the CO_(2) gas gets reduced when Multi-Mode Transportation is implemented practically in the campus.展开更多
文摘This paper describes current situation and special requirements of local electric power communication network in China. The paper discusses the disadvantages of SDH and fiber loop carrier system applied to electric power communication network. It presents a new Communication System-IDS-2000 integrated digital communication system. The paper introduces the characteristics and application of IDS-2000 system in the local electric power communication network.
文摘车载网VANET是一种应用于智能交通系统的新型无线移动自组织网络(mobile ad hoc network,MANET).随着车辆以及移动ad hoc网络技术的发展,车载网已经成为一个新兴的研究领域.针对VANET中车辆行驶的特征,提出一种拓扑相对稳定的车辆分簇算法.在此算法基础上,根据专用短程通信(dedicated short range communication,DSRC)标准中控制信道(control channel,CCH)和服务信道(service channel,SCH)的分配,考虑车辆间的无线通信干扰和不同应用的QoS需求,提出一种基于分簇的多信道混合型MAC协议,簇内通信采用非竞争的TDMA机制,簇间通信采用基于竞争的CSMA?CA机制,相邻簇采用不同的服务信道.模拟实验表明,提出的MAC协议在同时满足实时应用的延迟需求和非实时应用的吞吐量方面,优于现有协议.
基金This work was supported in part by the Chung-Ang University Research Grants in 2019,and in part by R&D Program for Forest Science Technology(Project No.“2021338C10-2123-CD02)provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Recently,the importance of vehicle safety supporting system has been highlighted as autonomous driving and platooning has attracted the researchers.To ensure driving safety,each vehicle must broadcast a basic safety message(BSM)every 100 ms.However,stable BSM exchange is difficult because of the changing environment and limited bandwidth of vehicular wireless communication.The increasing number of vehicles on the road increases the competition to access wireless networks for BSM exchange;this increases the packet collision rate.An increased packet collision rate impairs the transmission and reception of BSM information,which can easily cause a traffic accident.We propose a solution,the vehicular safety support system(V3S),which exchanges BSMs reliably even when many vehicles are on the road.The V3S uses a clustering scheme to decrease network traffic by reducing the amount of data exchanged between a vehicle and the roadside unit(RSU).In addition,the V3S reduces the collision rate of wireless network packets by broadcasting the vehicle’s BSM in an allocated timeslot using the time division multiple access(TDMA)MAC protocol.The V3S also deals with insufficient bandwidth for dedicated short-range communications(DSRC)by changing DSRC channels according to traffic flow.In evaluating the packet error rate for stable BSM packet delivery,the V3S demonstrates an excellent packet error rate of less than 1%,compared to the 802.11p with its packet error rate of 82%.
文摘Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.
基金This work was supported in part by the Chung-Ang University Research Scholarship Grants in 2021,and in part by R&D Program for Forest Science Technology(Project No.“2021338B10-2223-CD02)provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.
基金Project(4144081)supported by Beijing Natural Science Foundation,ChinaProjects(61403021,U1334211,61490705)supported by the National Natural Science Foundation of China+1 种基金Project(2015RC015)supported by the Fundamental Research Funds for Central Universities,ChinaProject supported by the Foundation of Beijing Key Laboratory for Cooperative Vehicle Infrastructure Systems and Safety Control,China
文摘The concept of connected vehicles is with great potentials for enhancing the road transportation systems in the future. To support the functions and applications under the connected vehicles frame, the estimation of dynamic states of the vehicles under the cooperative environments is a fundamental issue. By integrating multiple sensors, localization modules in OBUs(on-board units) require effective estimation solutions to cope with various operation conditions. Based on the filtering estimation framework for sensor fusion, an ensemble Kalman filter(En KF) is introduced to estimate the vehicle's state with observations from navigation satellites and neighborhood vehicles, and the original En KF solution is improved by using the cubature transformation to fulfill the requirements of the nonlinearity approximation capability, where the conventional ensemble analysis operation in En KF is modified to enhance the estimation performance without increasing the computational burden significantly. Simulation results from a nonlinear case and the cooperative vehicle localization scenario illustrate the capability of the proposed filter, which is crucial to realize the active safety of connected vehicles in future intelligent transportation.
基金This work was supported by Suranaree University of Technology(SUT).The authors would also like to thank SUT Smart Transit and Thai AI for supporting the experimental and datasets.
文摘The number of accidents in the campus of Suranaree University of Technology(SUT)has increased due to increasing number of personal vehicles.In this paper,we focus on the development of public transportation system using Intelligent Transportation System(ITS)along with the limitation of personal vehicles using sharing economy model.The SUT Smart Transit is utilized as a major public transportation system,while MoreSai@SUT(electric motorcycle services)is a minor public transportation system in this work.They are called Multi-Mode Transportation system as a combination.Moreover,a Vehicle toNetwork(V2N)is used for developing theMulti-Mode Transportation system in the campus.Due to equipping vehicles with On Board Unit(OBU)and 4G LTE modules,the real time speed and locations are transmitted to the cloud.The data is then applied in the proposed mathematical model for the estimation of Estimated Time of Arrival(ETA).In terms of vehicle classifications and counts,we deployed CCTV cameras,and the recorded videos are analyzed by using You Only Look Once(YOLO)algorithm.The simulation and measurement results of SUT Smart Transit and MoreSai@SUT before the covid-19 pandemic are discussed.Contrary to the existing researches,the proposed system is implemented in the real environment.The final results unveil the attractiveness and satisfaction of users.Also,due to the proposed system,the CO_(2) gas gets reduced when Multi-Mode Transportation is implemented practically in the campus.