期刊文献+
共找到125,441篇文章
< 1 2 250 >
每页显示 20 50 100
基于Deep Forest算法的对虾急性肝胰腺坏死病(AHPND)预警数学模型构建
1
作者 王印庚 于永翔 +5 位作者 蔡欣欣 张正 王春元 廖梅杰 朱洪洋 李昊 《渔业科学进展》 CSCD 北大核心 2024年第3期171-181,共11页
为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据... 为预报池塘养殖凡纳对虾(Penaeus vannamei)急性肝胰腺坏死病(AHPND)的发生,自2020年开始,笔者对凡纳对虾养殖区开展了连续监测工作,包括与疾病发生相关的环境理化因子、微生物因子、虾体自身健康状况等18个候选预警因子指标,通过数据标准化处理后分析病原、宿主与环境之间的相关性,对候选预警因子进行筛选,基于Python语言编程结合Deep Forest、Light GBM、XGBoost算法进行数据建模和预测性能评判,仿真环境为Python2.7,以预警因子指标作为输入样本(即警兆),以对虾是否发病指标作为输出结果(即警情),根据输入样本和输出结果各自建立输入数据矩阵和目标数据矩阵,利用原始数据矩阵对输入样本进行初始化,结合函数方程进行拟合,拟合的源代码能利用已知环境、病原及对虾免疫指标数据对目标警情进行预测。最终建立了基于Deep Forest算法的虾体(肝胰腺内)细菌总数、虾体弧菌(Vibrio)占比、水体细菌总数和盐度的4维向量预警预报模型,准确率达89.00%。本研究将人工智能算法应用到对虾AHPND发生的预测预报,相关研究结果为对虾AHPND疾病预警预报建立了预警数学模型,并为对虾健康养殖和疾病防控提供了技术支撑和有力保障。 展开更多
关键词 对虾 急性肝胰腺坏死病 预警数学模型 deep Forest算法 PYTHON语言
下载PDF
基于DeepLabv3+的船体结构腐蚀检测方法
2
作者 向林浩 方昊昱 +2 位作者 周健 张瑜 李位星 《船海工程》 北大核心 2024年第2期30-34,共5页
利用图像识别方法对无人机、机器人所采集的实时图像开展船体结构腐蚀检测,可有效提高检验检测效率和数字化、智能化水平,具有极大的应用价值和潜力,将改变传统的船体结构检验检测方式。提出一种基于DeepLabv3+的船体结构腐蚀检测模型,... 利用图像识别方法对无人机、机器人所采集的实时图像开展船体结构腐蚀检测,可有效提高检验检测效率和数字化、智能化水平,具有极大的应用价值和潜力,将改变传统的船体结构检验检测方式。提出一种基于DeepLabv3+的船体结构腐蚀检测模型,通过收集图像样本并进行三种腐蚀类别的分割标注,基于DeepLabv3+语义分割模型进行网络的训练,预测图片中腐蚀的像素点类别和区域,模型在测试集的精准率达到52.92%,证明了使用DeepLabv3+检测船体腐蚀缺陷的可行性。 展开更多
关键词 船体结构 腐蚀检测 深度学习 deepLabv3+
下载PDF
基于M-DeepLab网络的速度建模技术研究
3
作者 徐秀刚 张浩楠 +1 位作者 许文德 郭鹏 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期145-155,共11页
本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融... 本文提出了一种适用于速度建模方法的M-DeepLab网络框架,该网络将地震炮集记录作为输入,网络主体使用轻量级MobileNet,以此提升网络训练速度;并在编码环节ASPP模块后添加了Attention模块,且在解码环节将不同网络深度的速度特征进行了融合,既获得了更多的速度特征,又保留了网络浅部的速度信息,防止出现网络退化和过拟合问题。模型测试证明,M-DeepLab网络能够实现智能、精确的速度建模,简单模型、复杂模型以及含有噪声数据复杂模型的智能速度建模,均取得了良好的效果。相较DeepLabV3+网络,本文方法对于速度模型界面处的预测,特别是速度突变区域的预测,具有更高的预测精度,从而验证了该方法精确性、高效性、实用性和抗噪性。 展开更多
关键词 深度学习 速度建模 M-deepLab网络 监督学习
下载PDF
基于改进DeepLabV3+的指针式仪表智能识别方法设计
4
作者 吕新荣 来宝 周珺 《电子设计工程》 2024年第23期145-149,154,共6页
针对现有仪表识别方法存在的诸如对表盘差异敏感、环境干扰严重以及图像质量依赖性强导致识别准确率不高的问题,提出了一种基于改进DeepLabV3+的指针式仪表智能识别算法。通过引入GhostNetV2作为主干网络进行特征提取,并添加注意力模块C... 针对现有仪表识别方法存在的诸如对表盘差异敏感、环境干扰严重以及图像质量依赖性强导致识别准确率不高的问题,提出了一种基于改进DeepLabV3+的指针式仪表智能识别算法。通过引入GhostNetV2作为主干网络进行特征提取,并添加注意力模块CBAM,有效提升了模型在仪表语义分割任务的精度;同时设计了多类仪表的示值识别算法,实现了对多类仪表的指针读数。通过在构建的指针式仪表识别数据集上对算法进行评估,结果表明,仪表智能识别算法能够适应多种仪表类型和复杂环境,识别准确率最高达99.67%,且改进的DeepLabV3+模型平均IoU达79.8%,性能优于原始模型,能够满足实际工业应用需求。 展开更多
关键词 指针式仪表 注意力机制 深度学习 自动识别
下载PDF
基于DeeplabV3+网络的轻量化语义分割算法
5
作者 张秀再 张昊 杨昌军 《科学技术与工程》 北大核心 2024年第24期10382-10393,共12页
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高... 针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution, DSC)与空洞空间金字塔(atrous spatia pyramid pooling, ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution, DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化。改进模型在PASCAL VOC 2012数据集上进行测试。实验结果表明:平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%。改进模型的网络参数量(params)减少了3.86×10~6,浮点计算量(GFLOPs)减少了117.98 G。因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果。 展开更多
关键词 语义分割 deeplabV3+ 轻量化 深度可分离卷积(DSC) 空洞空间金字塔池化(ASPP)
下载PDF
基于YOLO+DeepSort的出租车检测及交通流影响研究
6
作者 徐慧智 陈爽 +2 位作者 刘嘉玲 蒋时森 陈祎楠 《大连交通大学学报》 CAS 2024年第5期33-41,共9页
为了解决出租车与黄色小型车辆外观相似、不易区分的问题,以哈尔滨市出租车为研究对象,以YOLOv5+DeepSort为基本框架,新增交通量与速度检测模块。基于视频采集数据,建立出租车目标检测数据集与出租车图像数据集,采用深度学习方法构建车... 为了解决出租车与黄色小型车辆外观相似、不易区分的问题,以哈尔滨市出租车为研究对象,以YOLOv5+DeepSort为基本框架,新增交通量与速度检测模块。基于视频采集数据,建立出租车目标检测数据集与出租车图像数据集,采用深度学习方法构建车型识别模型。建立了考虑出租车比例因素的速度影响模型,分析了畅行状态下出租车运行特征。结果表明:结合深度学习的出租车车型识别精确率高达0.88;畅行状态下出租车平均速度比其他车型高5~15 km/h;出租车比例对全局平均速度及速度-流量曲线增长趋势存在一定影响;考虑出租车比例的速度影响模型在继承传统BPR模型优点的同时,精度提升了20%左右。 展开更多
关键词 交通运输规划与管理 深度学习 出租车 运行特征 车型识别
下载PDF
基于注意力机制改进的DeepLabV3+遥感图像分割算法
7
作者 侯艳丽 盖锡林 《微电子学与计算机》 2024年第8期53-61,共9页
DeepLabV3+分割算法具有高效的编解码结构,常用在图像分割任务中。针对DeepLabV3+高分辨率遥感图像语义分割中存在的分割目标边缘不精确和孔洞缺陷问题,提出了一种基于注意力机制改进的DeepLabV3+遥感图像分割算法。构建ECBA(Efficient ... DeepLabV3+分割算法具有高效的编解码结构,常用在图像分割任务中。针对DeepLabV3+高分辨率遥感图像语义分割中存在的分割目标边缘不精确和孔洞缺陷问题,提出了一种基于注意力机制改进的DeepLabV3+遥感图像分割算法。构建ECBA(Efficient Convolutional Block Attention Module)注意力机制,将ECBA添加至DeepLabV3+主干网络Xception,增强其特征提取能力,得到注意力加权的高层特征。同时,将ECBA添加至编码器和解码器的连接支路,得到注意力加权后的低层特征。解码器将两种特征进行特征融合,以增强网络对不同分割目标的边缘以及同一目标内部的感知。实验结果表明,改进后的算法在ISPRS Potsdam数据集上的平均交并比(mean Intersection over Union,mIoU)和F1指数分别达到了79.80%和75.88%,比DeepLabV3+算法提高了11.06%和6.32%。 展开更多
关键词 遥感图像分割 deepLabV3+ 注意力机制 神经网络 深度学习
下载PDF
Dendritic Deep Learning for Medical Segmentation 被引量:1
8
作者 Zhipeng Liu Zhiming Zhang +3 位作者 Zhenyu Lei Masaaki Omura Rong-Long Wang Shangce Gao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期803-805,共3页
Dear Editor,This letter presents a novel segmentation approach that leverages dendritic neurons to tackle the challenges of medical imaging segmentation.In this study,we enhance the segmentation accuracy based on a Se... Dear Editor,This letter presents a novel segmentation approach that leverages dendritic neurons to tackle the challenges of medical imaging segmentation.In this study,we enhance the segmentation accuracy based on a SegNet variant including an encoder-decoder structure,an upsampling index,and a deep supervision method.Furthermore,we introduce a dendritic neuron-based convolutional block to enable nonlinear feature mapping,thereby further improving the effectiveness of our approach. 展开更多
关键词 thereby deep enable
下载PDF
Deep learning-based inpainting of saturation artifacts in optical coherence tomography images 被引量:2
9
作者 Muyun Hu Zhuoqun Yuan +2 位作者 Di Yang Jingzhu Zhao Yanmei Liang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第3期1-10,共10页
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ... Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness. 展开更多
关键词 Optical coherence tomography saturation artifacts deep learning image inpainting.
下载PDF
240 nm AlGaN-based deep ultraviolet micro-LEDs:size effect versus edge effect 被引量:2
10
作者 Shunpeng Lu Jiangxiao Bai +6 位作者 Hongbo Li Ke Jiang Jianwei Ben Shanli Zhang Zi-Hui Zhang Xiaojuan Sun Dabing Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期55-62,共8页
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef... 240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs. 展开更多
关键词 ALGAN deep ultraviolet micro-LEDs light extraction efficiency size effect edge effect
下载PDF
ST-LSTM-SA:A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning 被引量:1
11
作者 Hanxiao YUAN Yang LIU +3 位作者 Qiuhua TANG Jie LI Guanxu CHEN Wuxu CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1364-1378,共15页
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia... The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables. 展开更多
关键词 sound velocity field spatiotemporal prediction deep learning self-allention
下载PDF
UAV-Assisted Dynamic Avatar Task Migration for Vehicular Metaverse Services: A Multi-Agent Deep Reinforcement Learning Approach 被引量:1
12
作者 Jiawen Kang Junlong Chen +6 位作者 Minrui Xu Zehui Xiong Yutao Jiao Luchao Han Dusit Niyato Yongju Tong Shengli Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期430-445,共16页
Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metavers... Avatars, as promising digital representations and service assistants of users in Metaverses, can enable drivers and passengers to immerse themselves in 3D virtual services and spaces of UAV-assisted vehicular Metaverses. However, avatar tasks include a multitude of human-to-avatar and avatar-to-avatar interactive applications, e.g., augmented reality navigation,which consumes intensive computing resources. It is inefficient and impractical for vehicles to process avatar tasks locally. Fortunately, migrating avatar tasks to the nearest roadside units(RSU)or unmanned aerial vehicles(UAV) for execution is a promising solution to decrease computation overhead and reduce task processing latency, while the high mobility of vehicles brings challenges for vehicles to independently perform avatar migration decisions depending on current and future vehicle status. To address these challenges, in this paper, we propose a novel avatar task migration system based on multi-agent deep reinforcement learning(MADRL) to execute immersive vehicular avatar tasks dynamically. Specifically, we first formulate the problem of avatar task migration from vehicles to RSUs/UAVs as a partially observable Markov decision process that can be solved by MADRL algorithms. We then design the multi-agent proximal policy optimization(MAPPO) approach as the MADRL algorithm for the avatar task migration problem. To overcome slow convergence resulting from the curse of dimensionality and non-stationary issues caused by shared parameters in MAPPO, we further propose a transformer-based MAPPO approach via sequential decision-making models for the efficient representation of relationships among agents. Finally, to motivate terrestrial or non-terrestrial edge servers(e.g., RSUs or UAVs) to share computation resources and ensure traceability of the sharing records, we apply smart contracts and blockchain technologies to achieve secure sharing management. Numerical results demonstrate that the proposed approach outperforms the MAPPO approach by around 2% and effectively reduces approximately 20% of the latency of avatar task execution in UAV-assisted vehicular Metaverses. 展开更多
关键词 AVATAR blockchain metaverses multi-agent deep reinforcement learning transformer UAVS
下载PDF
基于改进DeeplabV3+的水面多类型漂浮物分割方法研究
13
作者 包学才 刘飞燕 +2 位作者 聂菊根 许小华 柯华盛 《水利水电技术(中英文)》 北大核心 2024年第4期163-175,共13页
【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行... 【目的】为解决传统图像处理方法鲁棒性差、常用深度学习检测方法无法准确识别大片漂浮物的边界等问题,【方法】提出一种基于改进DeeplabV3+的水面多类型漂浮物识别的语义分割方法,提高水面漂浮的识别能力。对所收集实际水面漂浮物进行分类,采用自制数据集进行对比试验。算法选择xception网络作为主干网络以获得初步漂浮物特征,在加强特征提取网络部分引入注意力机制以强调有效特征信息,在后处理阶段加入全连接条件随机场模型,将单个像素点的局部信息与全局语义信息融合。【结果】对比图像分割性能指标,改进后的算法mPA(Mean Pixel Accuracy)提升了5.73%,mIOU(Mean Intersection Over Union)提升了4.37%。【结论】相比于其他算法模型,改进后的DeeplabV3+算法对漂浮物特征的获取能力更强,同时能获得丰富的细节信息以更精准地识别多类型水面漂浮物的边界与较难分类的漂浮物,在对多个水库场景测试后满足实际水域环境中漂浮物检测的需求。 展开更多
关键词 深度学习 语义分割 特征提取 漂浮物识别 注意力机制 全连接条件随机场 算法模型 影响因素
下载PDF
Deep neural network-enabled battery open-circuit voltage estimation based on partial charging data 被引量:1
14
作者 Ziyou Zhou Yonggang Liu +2 位作者 Chengming Zhang Weixiang Shen Rui Xiong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期120-132,I0005,共14页
Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using b... Battery management systems(BMSs) play a vital role in ensuring efficient and reliable operations of lithium-ion batteries.The main function of the BMSs is to estimate battery states and diagnose battery health using battery open-circuit voltage(OCV).However,acquiring the complete OCV data online can be a challenging endeavor due to the time-consuming measurement process or the need for specific operating conditions required by OCV estimation models.In addressing these concerns,this study introduces a deep neural network-combined framework for accurate and robust OCV estimation,utilizing partial daily charging data.We incorporate a generative deep learning model to extract aging-related features from data and generate high-fidelity OCV curves.Correlation analysis is employed to identify the optimal partial charging data,optimizing the OCV estimation precision while preserving exceptional flexibility.The validation results,using data from nickel-cobalt-magnesium(NCM) batteries,illustrate the accurate estimation of the complete OCV-capacity curve,with an average root mean square errors(RMSE) of less than 3 mAh.Achieving this level of precision for OCV estimation requires only around 50 s collection of partial charging data.Further validations on diverse battery types operating under various conditions confirm the effectiveness of our proposed method.Additional cases of precise health diagnosis based on OCV highlight the significance of conducting online OCV estimation.Our method provides a flexible approach to achieve complete OCV estimation and holds promise for generalization to other tasks in BMSs. 展开更多
关键词 Lithium-ion battery Open-circuit voltage Health diagnosis deep learning
下载PDF
A review of reservoir damage during hydraulic fracturing of deep and ultra-deep reservoirs 被引量:2
15
作者 Kun Zhang Xiong-Fei Liu +6 位作者 Dao-Bing Wang Bo Zheng Tun-Hao Chen Qing Wang Hao Bai Er-Dong Yao Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期384-409,共26页
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u... Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage. 展开更多
关键词 Artificial fracture deep and ultra-deep reservoir Fracture conductivity Fracturing fluid Hydraulic fracturing Reservoir damage
下载PDF
Deep learning for joint channel estimation and feedback in massive MIMO systems 被引量:1
16
作者 Jiajia Guo Tong Chen +3 位作者 Shi Jin Geoffrey Ye Li Xin Wang Xiaolin Hou 《Digital Communications and Networks》 SCIE CSCD 2024年第1期83-93,共11页
The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,th... The great potentials of massive Multiple-Input Multiple-Output(MIMO)in Frequency Division Duplex(FDD)mode can be fully exploited when the downlink Channel State Information(CSI)is available at base stations.However,the accurate CsI is difficult to obtain due to the large amount of feedback overhead caused by massive antennas.In this paper,we propose a deep learning based joint channel estimation and feedback framework,which comprehensively realizes the estimation,compression,and reconstruction of downlink channels in FDD massive MIMO systems.Two networks are constructed to perform estimation and feedback explicitly and implicitly.The explicit network adopts a multi-Signal-to-Noise-Ratios(SNRs)technique to obtain a single trained channel estimation subnet that works well with different SNRs and employs a deep residual network to reconstruct the channels,while the implicit network directly compresses pilots and sends them back to reduce network parameters.Quantization module is also designed to generate data-bearing bitstreams.Simulation results show that the two proposed networks exhibit excellent performance of reconstruction and are robust to different environments and quantization errors. 展开更多
关键词 Channel estimation CSI feedback deep learning Massive MIMO FDD
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
17
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
A Deep Learning Approach for Forecasting Thunderstorm Gusts in the Beijing–Tianjin–Hebei Region 被引量:1
18
作者 Yunqing LIU Lu YANG +3 位作者 Mingxuan CHEN Linye SONG Lei HAN Jingfeng XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1342-1363,共22页
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b... Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China. 展开更多
关键词 thunderstorm gusts deep learning weather forecasting convolutional neural network TRANSFORMER
下载PDF
基于改进DeepLabV3+的引导式道路提取方法及在震源点位优化中的应用 被引量:1
19
作者 曹凯奇 张凌浩 +3 位作者 徐虹 吴蔚 文武 周航 《西安石油大学学报(自然科学版)》 CAS 北大核心 2024年第2期128-142,共15页
为解决自动识别方法在道路提取时存在漏提、错提现象,提出一种引导式道路提取方法提高修正效率。在DeepLabV3+原有输入通道(3通道)的基础上添加额外输入通道(第4通道),将道路的4个极点转化为二维高斯热图后作为额外通道输入网络,网络以... 为解决自动识别方法在道路提取时存在漏提、错提现象,提出一种引导式道路提取方法提高修正效率。在DeepLabV3+原有输入通道(3通道)的基础上添加额外输入通道(第4通道),将道路的4个极点转化为二维高斯热图后作为额外通道输入网络,网络以极点作为引导信号,使网络适用于引导式道路提取任务;设计并行多分支模块,提取上下文信息,增强网络特征提取能力;融合类均衡二值交叉熵和骰子系数组成新的复合损失函数进行训练缓解正负样本不均衡问题。在公共Deepglobe数据集和西南某区域三维实际数据集上对本文网络进行验证,在Deepglobe上的像素精确度PA、交并比IOU、F1分数分别达到82.29%、68.81%和81.52%;在西南某区域三维数据集上PA、IOU、F1分别达到89.05%、81.01%和89.51%。实际应用表明:该方法能够有效提高道路识别精度,道路符合率达到85%以上,为后续震源点布设提供准确的信息。 展开更多
关键词 道路拾取 深度学习 deepLabV3+ 震源点布设
下载PDF
A credibility-aware swarm-federated deep learning framework in internet of vehicles 被引量:1
20
作者 Zhe Wang Xinhang Li +2 位作者 Tianhao Wu Chen Xu Lin Zhang 《Digital Communications and Networks》 SCIE CSCD 2024年第1期150-157,共8页
Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead... Although Federated Deep Learning(FDL)enables distributed machine learning in the Internet of Vehicles(IoV),it requires multiple clients to upload model parameters,thus still existing unavoidable communication overhead and data privacy risks.The recently proposed Swarm Learning(SL)provides a decentralized machine learning approach for unit edge computing and blockchain-based coordination.A Swarm-Federated Deep Learning framework in the IoV system(IoV-SFDL)that integrates SL into the FDL framework is proposed in this paper.The IoV-SFDL organizes vehicles to generate local SL models with adjacent vehicles based on the blockchain empowered SL,then aggregates the global FDL model among different SL groups with a credibility weights prediction algorithm.Extensive experimental results show that compared with the baseline frameworks,the proposed IoV-SFDL framework reduces the overhead of client-to-server communication by 16.72%,while the model performance improves by about 5.02%for the same training iterations. 展开更多
关键词 Swarm learning Federated deep learning Internet of vehicles PRIVACY EFFICIENCY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部