The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a promi...The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.展开更多
A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture ...A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved.展开更多
It is essential to maximize capacity while satisfying the transmission time delay of unmanned aerial vehicle(UAV)swarm communication system.In order to address this challenge,a dynamic decentralized optimization mecha...It is essential to maximize capacity while satisfying the transmission time delay of unmanned aerial vehicle(UAV)swarm communication system.In order to address this challenge,a dynamic decentralized optimization mechanism is presented for the realization of joint spectrum and power(JSAP)resource allocation based on deep Q-learning networks(DQNs).Each UAV to UAV(U2U)link is regarded as an agent that is capable of identifying the optimal spectrum and power to communicate with one another.The convolutional neural network,target network,and experience replay are adopted while training.The findings of the simulation indicate that the proposed method has the potential to improve both communication capacity and probability of successful data transmission when compared with random centralized assignment and multichannel access methods.展开更多
基于现代会议管理的需求,设计和实现一种C/S和B/S混合部署的会议管理系统。包括会议管理服务中心和若干个会议现场,会议管理服务中心包括数据服务器、应用服务器、Web服务器、通信网关和出口路由器;会议现场包括若干个便携式电脑、RFID(...基于现代会议管理的需求,设计和实现一种C/S和B/S混合部署的会议管理系统。包括会议管理服务中心和若干个会议现场,会议管理服务中心包括数据服务器、应用服务器、Web服务器、通信网关和出口路由器;会议现场包括若干个便携式电脑、RFID(Radio Frequency Identification)读卡器、二维码阅读器、信息显示发布设备、现场WLAN设备及用户终端。使用RIA(Rich Internet Application)技术优化了B/S界面,应用RFID对会议过程中的细节进行监控,借助SAAS(Software as a Service)模式实现会议管理按需配置和快速部署。该系统显著提高了会议管理效率。展开更多
基金supported by the Universiti Tunku Abdul Rahman (UTAR) Malaysia under UTARRF (IPSR/RMC/UTARRF/2021-C1/T05)
文摘The recent surge of mobile subscribers and user data traffic has accelerated the telecommunication sector towards the adoption of the fifth-generation (5G) mobile networks. Cloud radio access network (CRAN) is a prominent framework in the 5G mobile network to meet the above requirements by deploying low-cost and intelligent multiple distributed antennas known as remote radio heads (RRHs). However, achieving the optimal resource allocation (RA) in CRAN using the traditional approach is still challenging due to the complex structure. In this paper, we introduce the convolutional neural network-based deep Q-network (CNN-DQN) to balance the energy consumption and guarantee the user quality of service (QoS) demand in downlink CRAN. We first formulate the Markov decision process (MDP) for energy efficiency (EE) and build up a 3-layer CNN to capture the environment feature as an input state space. We then use DQN to turn on/off the RRHs dynamically based on the user QoS demand and energy consumption in the CRAN. Finally, we solve the RA problem based on the user constraint and transmit power to guarantee the user QoS demand and maximize the EE with a minimum number of active RRHs. In the end, we conduct the simulation to compare our proposed scheme with nature DQN and the traditional approach.
文摘针对传统深度Q学习网络(deep Q-learning network,DQN)在具有动态障碍物的路径规划下,移动机器人在探索时频繁碰撞难以移动至目标点的问题,通过在探索策略和经验回放机制上进行改进,提出一种改进的DQN算法。在探索策略上,利用快速搜索随机树(rapidly-exploring random tree,RRT)算法自动生成静态先验知识来指导动作选取,替代ε-贪婪策略的随机动作,提高智能体到达目标的成功率;在经验利用上,使用K-means算法设计一种聚类经验回放机制,根据动态障碍物的位置信息进行聚类分簇,着重采样与当前智能体状态相似的经验进行回放,使智能体更有效地避免碰撞动态障碍物。二维栅格化环境下的仿真实验表明,在动态环境下,该算法可以避开静态和动态障碍物,成功移动至目标点,验证了该算法在应对动态避障路径规划的可行性。
基金Supported by the National Ministries and Research Funds(3020020221111)
文摘A gait control method for a biped robot based on the deep Q-network (DQN) algorithm is proposed to enhance the stability of walking on uneven ground. This control strategy is an intelligent learning method of posture adjustment. A robot is taken as an agent and trained to walk steadily on an uneven surface with obstacles, using a simple reward function based on forward progress. The reward-punishment (RP) mechanism of the DQN algorithm is established after obtaining the offline gait which was generated in advance foot trajectory planning. Instead of implementing a complex dynamic model, the proposed method enables the biped robot to learn to adjust its posture on the uneven ground and ensures walking stability. The performance and effectiveness of the proposed algorithm was validated in the V-REP simulation environment. The results demonstrate that the biped robot's lateral tile angle is less than 3° after implementing the proposed method and the walking stability is obviously improved.
基金supported by the National Natural Science Foundation of China(62031017,61971221).
文摘It is essential to maximize capacity while satisfying the transmission time delay of unmanned aerial vehicle(UAV)swarm communication system.In order to address this challenge,a dynamic decentralized optimization mechanism is presented for the realization of joint spectrum and power(JSAP)resource allocation based on deep Q-learning networks(DQNs).Each UAV to UAV(U2U)link is regarded as an agent that is capable of identifying the optimal spectrum and power to communicate with one another.The convolutional neural network,target network,and experience replay are adopted while training.The findings of the simulation indicate that the proposed method has the potential to improve both communication capacity and probability of successful data transmission when compared with random centralized assignment and multichannel access methods.
文摘基于现代会议管理的需求,设计和实现一种C/S和B/S混合部署的会议管理系统。包括会议管理服务中心和若干个会议现场,会议管理服务中心包括数据服务器、应用服务器、Web服务器、通信网关和出口路由器;会议现场包括若干个便携式电脑、RFID(Radio Frequency Identification)读卡器、二维码阅读器、信息显示发布设备、现场WLAN设备及用户终端。使用RIA(Rich Internet Application)技术优化了B/S界面,应用RFID对会议过程中的细节进行监控,借助SAAS(Software as a Service)模式实现会议管理按需配置和快速部署。该系统显著提高了会议管理效率。