期刊文献+
共找到121,171篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-User MmWave Beam Tracking via Multi-Agent Deep Q-Learning 被引量:1
1
作者 MENG Fan HUANG Yongming +1 位作者 LU Zhaohua XIAO Huahua 《ZTE Communications》 2023年第2期53-60,共8页
Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynami... Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynamic environments.To reduce the overhead cost,we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method.With online learning of users’moving trajectories,the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate.Considering practical implementation,we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of deep Q-learning to reduce the training complexity.Furthermore,we propose a scalable state-action-reward design for scenarios with different users and antenna numbers.Simulation results verify the effectiveness of the designed method. 展开更多
关键词 multi-agent deep q-learning centralized training and distributed execution mmWave communication beam tracking scalability
下载PDF
基于Deep Q-Learning的抽取式摘要生成方法
2
作者 王灿宇 孙晓海 +4 位作者 吴叶辉 季荣彪 李亚东 张少如 杨士豪 《吉林大学学报(信息科学版)》 CAS 2023年第2期306-314,共9页
为解决训练过程中需要句子级标签的问题,提出一种基于深度强化学习的无标签抽取式摘要生成方法,将文本摘要转化为Q-learning问题,并利用DQN(Deep Q-Network)学习Q函数。为有效表示文档,利用BERT(Bidirectional Encoder Representations ... 为解决训练过程中需要句子级标签的问题,提出一种基于深度强化学习的无标签抽取式摘要生成方法,将文本摘要转化为Q-learning问题,并利用DQN(Deep Q-Network)学习Q函数。为有效表示文档,利用BERT(Bidirectional Encoder Representations from Transformers)作为句子编码器,Transformer作为文档编码器。解码器充分考虑了句子的信息富集度、显著性、位置重要性以及其与当前摘要之间的冗余程度等重要性等信息。该方法在抽取摘要时不需要句子级标签,可显著减少标注工作量。实验结果表明,该方法在CNN(Cable News Network)/DailyMail数据集上取得了最高的Rouge-L(38.35)以及可比较的Rouge-1(42.07)和Rouge-2(18.32)。 展开更多
关键词 抽取式文本摘要 BERT模型 编码器 深度强化学习
下载PDF
Path Planning for Intelligent Robots Based on Deep Q-learning With Experience Replay and Heuristic Knowledge 被引量:20
3
作者 Lan Jiang Hongyun Huang Zuohua Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期1179-1189,共11页
Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay ... Path planning and obstacle avoidance are two challenging problems in the study of intelligent robots. In this paper, we develop a new method to alleviate these problems based on deep Q-learning with experience replay and heuristic knowledge. In this method, a neural network has been used to resolve the "curse of dimensionality" issue of the Q-table in reinforcement learning. When a robot is walking in an unknown environment, it collects experience data which is used for training a neural network;such a process is called experience replay.Heuristic knowledge helps the robot avoid blind exploration and provides more effective data for training the neural network. The simulation results show that in comparison with the existing methods, our method can converge to an optimal action strategy with less time and can explore a path in an unknown environment with fewer steps and larger average reward. 展开更多
关键词 deep q-learning(DQL) experience replay(ER) heuristic knowledge(HK) path planning
下载PDF
Intelligent Fast Cell Association Scheme Based on Deep Q-Learning in Ultra-Dense Cellular Networks 被引量:1
4
作者 Jinhua Pan Lusheng Wang +2 位作者 Hai Lin Zhiheng Zha Caihong Kai 《China Communications》 SCIE CSCD 2021年第2期259-270,共12页
To support dramatically increased traffic loads,communication networks become ultra-dense.Traditional cell association(CA)schemes are timeconsuming,forcing researchers to seek fast schemes.This paper proposes a deep Q... To support dramatically increased traffic loads,communication networks become ultra-dense.Traditional cell association(CA)schemes are timeconsuming,forcing researchers to seek fast schemes.This paper proposes a deep Q-learning based scheme,whose main idea is to train a deep neural network(DNN)to calculate the Q values of all the state-action pairs and the cell holding the maximum Q value is associated.In the training stage,the intelligent agent continuously generates samples through the trial-anderror method to train the DNN until convergence.In the application stage,state vectors of all the users are inputted to the trained DNN to quickly obtain a satisfied CA result of a scenario with the same BS locations and user distribution.Simulations demonstrate that the proposed scheme provides satisfied CA results in a computational time several orders of magnitudes shorter than traditional schemes.Meanwhile,performance metrics,such as capacity and fairness,can be guaranteed. 展开更多
关键词 ultra-dense cellular networks(UDCN) cell association(CA) deep q-learning proportional fairness q-learning
下载PDF
Deep Q-Learning Based Optimal Query Routing Approach for Unstructured P2P Network 被引量:1
5
作者 Mohammad Shoab Abdullah Shawan Alotaibi 《Computers, Materials & Continua》 SCIE EI 2022年第3期5765-5781,共17页
Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environmen... Deep Reinforcement Learning(DRL)is a class of Machine Learning(ML)that combines Deep Learning with Reinforcement Learning and provides a framework by which a system can learn from its previous actions in an environment to select its efforts in the future efficiently.DRL has been used in many application fields,including games,robots,networks,etc.for creating autonomous systems that improve themselves with experience.It is well acknowledged that DRL is well suited to solve optimization problems in distributed systems in general and network routing especially.Therefore,a novel query routing approach called Deep Reinforcement Learning based Route Selection(DRLRS)is proposed for unstructured P2P networks based on a Deep Q-Learning algorithm.The main objective of this approach is to achieve better retrieval effectiveness with reduced searching cost by less number of connected peers,exchangedmessages,and reduced time.The simulation results shows a significantly improve searching a resource with compression to k-Random Walker and Directed BFS.Here,retrieval effectiveness,search cost in terms of connected peers,and average overhead are 1.28,106,149,respectively. 展开更多
关键词 Reinforcement learning deep q-learning unstructured p2p network query routing
下载PDF
基于Double Deep Q-learning的无线通信节点覆盖优化 被引量:1
6
作者 李忠涛 《电子技术与软件工程》 2021年第14期1-3,共3页
本文拟采用Double Deep Q-learning模型进行算法设计,该算法是强化学习中的一种values-based算法,实现一种神经网络模型来代替表格Q-Table,解决了系统状态过多导致的Q-Table过大问题。
关键词 无线通信节点 最优路径 Double deep q-learning
下载PDF
Deep Q-Learning Based Computation Offloading Strategy for Mobile Edge Computing 被引量:6
7
作者 Yifei Wei Zhaoying Wang +1 位作者 Da Guo FRichard Yu 《Computers, Materials & Continua》 SCIE EI 2019年第4期89-104,共16页
To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia re... To reduce the transmission latency and mitigate the backhaul burden of the centralized cloud-based network services,the mobile edge computing(MEC)has been drawing increased attention from both industry and academia recently.This paper focuses on mobile users’computation offloading problem in wireless cellular networks with mobile edge computing for the purpose of optimizing the computation offloading decision making policy.Since wireless network states and computing requests have stochastic properties and the environment’s dynamics are unknown,we use the modelfree reinforcement learning(RL)framework to formulate and tackle the computation offloading problem.Each mobile user learns through interactions with the environment and the estimate of its performance in the form of value function,then it chooses the overhead-aware optimal computation offloading action(local computing or edge computing)based on its state.The state spaces are high-dimensional in our work and value function is unrealistic to estimate.Consequently,we use deep reinforcement learning algorithm,which combines RL method Q-learning with the deep neural network(DNN)to approximate the value functions for complicated control applications,and the optimal policy will be obtained when the value function reaches convergence.Simulation results showed that the effectiveness of the proposed method in comparison with baseline methods in terms of total overheads of all mobile users. 展开更多
关键词 Mobile edge computing computation offloading resource allocation deep reinforcement learning
下载PDF
A deep Q-learning model for sequential task offloading in edge AI systems
8
作者 Dong Liu Shiheng Gu +1 位作者 Xinyu Fan Xu Zheng 《Intelligent and Converged Networks》 EI 2024年第3期207-221,共15页
Currently,edge Artificial Intelligence(AI)systems have significantly facilitated the functionalities of intelligent devices such as smartphones and smart cars,and supported diverse applications and services.This funda... Currently,edge Artificial Intelligence(AI)systems have significantly facilitated the functionalities of intelligent devices such as smartphones and smart cars,and supported diverse applications and services.This fundamental supports come from continuous data analysis and computation over these devices.Considering the resource constraints of terminal devices,multi-layer edge artificial intelligence systems improve the overall computing power of the system by scheduling computing tasks to edge and cloud servers for execution.Previous efforts tend to ignore the nature of strong pipelined characteristics of processing tasks in edge AI systems,such as the encryption,decryption and consensus algorithm supporting the implementation of Blockchain techniques.Therefore,this paper proposes a new pipelined task scheduling algorithm(referred to as PTS-RDQN),which utilizes the system representation ability of deep reinforcement learning and integrates multiple dimensional information to achieve global task scheduling.Specifically,a co-optimization strategy based on Rainbow Deep Q-Learning(RainbowDQN)is proposed to allocate computation tasks for mobile devices,edge and cloud servers,which is able to comprehensively consider the balance of task turnaround time,link quality,and other factors,thus effectively improving system performance and user experience.In addition,a task scheduling strategy based on PTS-RDQN is proposed,which is capable of realizing dynamic task allocation according to device load.The results based on many simulation experiments show that the proposed method can effectively improve the resource utilization,and provide an effective task scheduling strategy for the edge computing system with cloud-edge-end architecture. 展开更多
关键词 edge computing task scheduling reinforcement learning Rainbow deep q-learning(RainbowDQN)
原文传递
改进Q-Learning的路径规划算法研究
9
作者 宋丽君 周紫瑜 +2 位作者 李云龙 侯佳杰 何星 《小型微型计算机系统》 CSCD 北大核心 2024年第4期823-829,共7页
针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在... 针对Q-Learning算法学习效率低、收敛速度慢且在动态障碍物的环境下路径规划效果不佳的问题,本文提出一种改进Q-Learning的移动机器人路径规划算法.针对该问题,算法根据概率的突变性引入探索因子来平衡探索和利用以加快学习效率;通过在更新函数中设计深度学习因子以保证算法探索概率;融合遗传算法,避免陷入局部路径最优同时按阶段探索最优迭代步长次数,以减少动态地图探索重复率;最后提取输出的最优路径关键节点采用贝塞尔曲线进行平滑处理,进一步保证路径平滑度和可行性.实验通过栅格法构建地图,对比实验结果表明,改进后的算法效率相较于传统算法在迭代次数和路径上均有较大优化,且能够较好的实现动态地图下的路径规划,进一步验证所提方法的有效性和实用性. 展开更多
关键词 移动机器人 路径规划 q-learning算法 平滑处理 动态避障
下载PDF
改进的Q-learning蜂群算法求解置换流水车间调度问题
10
作者 杜利珍 宣自风 +1 位作者 唐家琦 王鑫涛 《组合机床与自动化加工技术》 北大核心 2024年第10期175-180,共6页
针对置换流水车间调度问题,提出了一种基于改进的Q-learning算法的人工蜂群算法。该算法设计了一种改进的奖励函数作为人工蜂群算法的环境,根据奖励函数的优劣来判断下一代种群的寻优策略,并通过Q-learning智能选择人工蜂群算法的蜜源... 针对置换流水车间调度问题,提出了一种基于改进的Q-learning算法的人工蜂群算法。该算法设计了一种改进的奖励函数作为人工蜂群算法的环境,根据奖励函数的优劣来判断下一代种群的寻优策略,并通过Q-learning智能选择人工蜂群算法的蜜源的更新维度数大小,根据选择的维度数大小对编码进行更新,提高了收敛速度和精度,最后使用不同规模的置换流水车间调度问题的实例来验证所提算法的性能,通过对标准实例的计算与其它算法对比,证明该算法的准确性。 展开更多
关键词 q-learning算法 人工蜂群算法 置换流水车间调度
下载PDF
基于改进Q-Learning的移动机器人路径规划算法
11
作者 王立勇 王弘轩 +2 位作者 苏清华 王绅同 张鹏博 《电子测量技术》 北大核心 2024年第9期85-92,共8页
随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的... 随着移动机器人在生产生活中的深入应用,其路径规划能力也需要向快速性和环境适应性兼备发展。为解决现有移动机器人使用强化学习方法进行路径规划时存在的探索前期容易陷入局部最优、反复搜索同一区域,探索后期收敛率低、收敛速度慢的问题,本研究提出一种改进的Q-Learning算法。该算法改进Q矩阵赋值方法,使迭代前期探索过程具有指向性,并降低碰撞的情况;改进Q矩阵迭代方法,使Q矩阵更新具有前瞻性,避免在一个小区域中反复探索;改进随机探索策略,在迭代前期全面利用环境信息,后期向目标点靠近。在不同栅格地图仿真验证结果表明,本文算法在Q-Learning算法的基础上,通过上述改进降低探索过程中的路径长度、减少抖动并提高收敛的速度,具有更高的计算效率。 展开更多
关键词 路径规划 强化学习 移动机器人 q-learning算法 ε-decreasing策略
下载PDF
基于Q-Learning的航空器滑行路径规划研究
12
作者 王兴隆 王睿峰 《中国民航大学学报》 CAS 2024年第3期28-33,共6页
针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规... 针对传统算法规划航空器滑行路径准确度低、不能根据整体场面运行情况进行路径规划的问题,提出一种基于Q-Learning的路径规划方法。通过对机场飞行区网络结构模型和强化学习的仿真环境分析,设置了状态空间和动作空间,并根据路径的合规性和合理性设定了奖励函数,将路径合理性评价值设置为滑行路径长度与飞行区平均滑行时间乘积的倒数。最后,分析了动作选择策略参数对路径规划模型的影响。结果表明,与A*算法和Floyd算法相比,基于Q-Learning的路径规划在滑行距离最短的同时,避开了相对繁忙的区域,路径合理性评价值高。 展开更多
关键词 滑行路径规划 机场飞行区 强化学习 q-learning
下载PDF
基于Q-Learning的分簇无线传感网信任管理机制
13
作者 赵远亮 王涛 +3 位作者 李平 吴雅婷 孙彦赞 王瑞 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期255-266,共12页
针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能... 针对无线传感器网络中存在的安全问题,提出了基于Q-Learning的分簇无线传感网信任管理机制(Q-learning based trust management mechanism for clustered wireless sensor networks,QLTMM-CWSN).该机制主要考虑通信信任、数据信任和能量信任3个方面.在网络运行过程中,基于节点的通信行为、数据分布和能量消耗,使用Q-Learning算法更新节点信任值,并选择簇内信任值最高的节点作为可信簇头节点.当簇中主簇头节点的信任值低于阈值时,可信簇头节点代替主簇头节点管理簇内成员节点,维护正常的数据传输.研究结果表明,QLTMM-CWSN机制能有效抵御通信攻击、伪造本地数据攻击、能量攻击和混合攻击. 展开更多
关键词 无线传感器网络 q-learning 信任管理机制 网络安全
下载PDF
基于多步信息辅助的Q-learning路径规划算法
14
作者 王越龙 王松艳 晁涛 《系统仿真学报》 CAS CSCD 北大核心 2024年第9期2137-2148,共12页
为提升静态环境下移动机器人路径规划能力,解决传统Q-learning算法在路径规划中收敛速度慢的问题,提出一种基于多步信息辅助机制的Q-learning改进算法。利用ε-greedy策略中贪婪动作的多步信息与历史最优路径长度更新资格迹,使有效的资... 为提升静态环境下移动机器人路径规划能力,解决传统Q-learning算法在路径规划中收敛速度慢的问题,提出一种基于多步信息辅助机制的Q-learning改进算法。利用ε-greedy策略中贪婪动作的多步信息与历史最优路径长度更新资格迹,使有效的资格迹在算法迭代中持续发挥作用,用保存的多步信息解决可能落入的循环陷阱;使用局部多花朵的花授粉算法初始化Q值表,提升机器人前期搜索效率;基于机器人不同探索阶段的目的,结合迭代路径长度的标准差与机器人成功到达目标点的次数设计动作选择策略,以增强算法对环境信息探索与利用的平衡能力。实验结果表明:该算法具有较快的收敛速度,验证了算法的可行性与有效性。 展开更多
关键词 路径规划 q-learning 收敛速度 动作选择策略 栅格地图
下载PDF
基于softmax的加权Double Q-Learning算法
15
作者 钟雨昂 袁伟伟 关东海 《计算机科学》 CSCD 北大核心 2024年第S01期46-50,共5页
强化学习作为机器学习的一个分支,用于描述和解决智能体在与环境的交互过程中,通过学习策略以达成回报最大化的问题。Q-Learning作为无模型强化学习的经典方法,存在过估计引起的最大化偏差问题,并且在环境中奖励存在噪声时表现不佳。Dou... 强化学习作为机器学习的一个分支,用于描述和解决智能体在与环境的交互过程中,通过学习策略以达成回报最大化的问题。Q-Learning作为无模型强化学习的经典方法,存在过估计引起的最大化偏差问题,并且在环境中奖励存在噪声时表现不佳。Double Q-Learning(DQL)的出现解决了过估计问题,但同时造成了低估问题。为解决以上算法的高低估问题,提出了基于softmax的加权Q-Learning算法,并将其与DQL相结合,提出了一种新的基于softmax的加权Double Q-Learning算法(WDQL-Softmax)。该算法基于加权双估计器的构造,对样本期望值进行softmax操作得到权重,使用权重估计动作价值,有效平衡对动作价值的高估和低估问题,使估计值更加接近理论值。实验结果表明,在离散动作空间中,相比于Q-Learning算法、DQL算法和WDQL算法,WDQL-Softmax算法的收敛速度更快且估计值与理论值的误差更小。 展开更多
关键词 强化学习 q-learning Double q-learning Softmax
下载PDF
多无人机辅助边缘计算场景下基于Q-learning的任务卸载优化
16
作者 张露 王康 +2 位作者 燕晶 张博文 王茂励 《曲阜师范大学学报(自然科学版)》 CAS 2024年第4期74-82,共9页
引入多无人机辅助边缘计算系统,由多个无人机和原有边缘服务器共同为移动用户提供通信和计算资源;将优化问题建模为资源竞争和卸载决策约束下的系统总效用最大化问题,系统总效用由用户满意度、任务延迟和系统能耗3个因素组成.由于优化... 引入多无人机辅助边缘计算系统,由多个无人机和原有边缘服务器共同为移动用户提供通信和计算资源;将优化问题建模为资源竞争和卸载决策约束下的系统总效用最大化问题,系统总效用由用户满意度、任务延迟和系统能耗3个因素组成.由于优化模型是一个具有NP难属性的非凸问题,故采用强化学习方法求解得到使系统总效用最大的最优任务卸载决策集.仿真实验结果表明,与贪心顺序调优卸载方案和随机选择卸载方案相比,该文提出的Q-learning方案的系统总效用分别提高了15%和43%以上. 展开更多
关键词 多无人机辅助边缘计算系统 任务卸载 q-learning算法
下载PDF
基于改进Q-learning算法移动机器人局部路径研究
17
作者 方文凯 廖志高 《计算机与数字工程》 2024年第5期1265-1269,1274,共6页
针对局部路径规划时因无法提前获取环境信息导致移动机器人搜索不到合适的路径,以及在采用马尔可夫决策过程中传统强化学习算法应用于局部路径规划时存在着学习效率低下及收敛速度较慢等问题,提出一种改进的Q-learn-ing(QL)算法。首先... 针对局部路径规划时因无法提前获取环境信息导致移动机器人搜索不到合适的路径,以及在采用马尔可夫决策过程中传统强化学习算法应用于局部路径规划时存在着学习效率低下及收敛速度较慢等问题,提出一种改进的Q-learn-ing(QL)算法。首先设计一种动态自适应贪婪策略,用于平衡移动机器人对环境探索和利用之间的问题;其次根据A*算法思想设计启发式学习评估模型,从而动态调整学习因子并为搜索路径提供导向作用;最后引入三阶贝塞尔曲线规划对路径进行平滑处理。通过Pycharm平台仿真结果表明,使得改进后的QL算法所规划的路径长度、搜索效率及路径平滑性等特性上都优于传统Sarsa算法及QL算法,比传统Sarsa算法迭代次数提高32.3%,搜索时间缩短27.08%,比传统QL算法迭代次数提高27.32%,搜索时间缩短17.28%,路径规划的拐点大幅度减少,局部路径优化效果较为明显。 展开更多
关键词 移动机器人 q-learning算法 局部路径 A^(*)算法 贝塞尔曲线
下载PDF
一种基于Q-learning强化学习的导向性处理器安全性模糊测试方案
18
作者 崔云凯 张伟 《北京信息科技大学学报(自然科学版)》 2024年第4期81-87,95,共8页
针对处理器安全性模糊测试在进行细粒度变异时遗传算法存在一定的盲目性,易使生成的测试用例触发相同类型漏洞的问题,提出了一种基于Q-learning强化学习的导向性处理器安全性模糊测试方案。通过测试用例的状态值和所触发的漏洞类型对应... 针对处理器安全性模糊测试在进行细粒度变异时遗传算法存在一定的盲目性,易使生成的测试用例触发相同类型漏洞的问题,提出了一种基于Q-learning强化学习的导向性处理器安全性模糊测试方案。通过测试用例的状态值和所触发的漏洞类型对应的权值构造奖励函数,使用强化学习指导生成具有针对性和导向性的测试用例,快速地触发不同类型的漏洞。在Hikey970平台上的实验验证了基于ARMv8的测试用例生成框架的有效性,并且相较于传统使用遗传算法作为反馈的策略,本文方案在相同时间内生成有效测试用例的的数量多19.15%,发现漏洞类型的数量多80.00%。 展开更多
关键词 处理器漏洞检测 模糊测试 q-learning强化学习 ARMv8 分支预测类漏洞
下载PDF
Q-Learning-Assisted Meta-Heuristics for Scheduling Distributed Hybrid Flow Shop Problems
19
作者 Qianyao Zhu Kaizhou Gao +2 位作者 Wuze Huang Zhenfang Ma Adam Slowik 《Computers, Materials & Continua》 SCIE EI 2024年第9期3573-3589,共17页
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S... The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness. 展开更多
关键词 Distributed scheduling hybrid flow shop META-HEURISTICS local search q-learning
下载PDF
Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles
20
作者 Othman S.Al-Heety Zahriladha Zakaria +4 位作者 Ahmed Abu-Khadrah Mahamod Ismail Sarmad Nozad Mahmood Mohammed Mudhafar Shakir Hussein Alsariera 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2103-2127,共25页
Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled... Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision.In this article,these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data.The framework integrates Kalman filtering and Q-learning.Unlike smoothing Kalman filtering,our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error.Unlike traditional Q-learning,our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from high traffic on the road according to the maximum number of vehicles in the junction roads.For evaluation,the model has been simulated on a single intersection consisting of four roads:east,west,north,and south.A comparison of the developed adaptive quantized Q-learning(AQQL)framework with state-of-the-art and greedy approaches shows the superiority of AQQL with an improvement percentage in terms of the released number of vehicles of AQQL is 5%over the greedy approach and 340%over the state-of-the-art approach.Hence,AQQL provides an effective traffic control that can be applied in today’s intelligent traffic system. 展开更多
关键词 q-learning intelligent transportation system(ITS) traffic control vehicular communication kalman filtering smart city Internet of Things
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部