期刊文献+
共找到435篇文章
< 1 2 22 >
每页显示 20 50 100
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
1
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 Multi-Mode Data Fusion Coupling Convolutional auto-encoder Adaptive Optimization deep Learning
下载PDF
基于深度SSDAE网络的刀具磨损状态识别
2
作者 郭润兰 尉卫卫 +1 位作者 王广书 黄华 《振动.测试与诊断》 EI CSCD 北大核心 2024年第2期305-312,410,411,共10页
针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网... 针对刀具磨损状态识别过程中采集数据量大、干扰信号复杂且需人为选择特征参数的问题,为提高刀具磨损状态识别模型的鲁棒性与泛化性,提出了一种数据驱动下深度堆叠稀疏降噪自编码(stacking sparse denoising auto-encoder,简称SSDAE)网络的刀具磨损状态识别方法,实现隐藏在数据中深层次的数据特征自动挖掘。首先,将原始振动信号分解为一系列固有模态分量(intrinsic mode function,简称IMF),并采用皮尔逊相关系数法选取了最优固有模态来组合一个新的信号;其次,采用SSDAE网络自适应提取特征后对刀具磨损阶段进行了状态识别,识别精度达到98%;最后,对网络模型进行实验验证,并与最常用的刀具磨损状态识别方法进行了对比。实验结果表明,所提出的方法能够很好地处理非平稳振动信号,对不同刀具磨损阶段状态的识别效果良好,并具有较好的泛化性能和可靠性。 展开更多
关键词 深度堆叠稀疏自编码网络 变分模态分解 K-最近邻分类器 自适应特征提取 状态识别
下载PDF
Feature Enhanced Stacked Auto Encoder for Diseases Detection in Brain MRI
3
作者 Umair Muneer Butt Rimsha Arif +2 位作者 Sukumar Letchmunan Babur Hayat Malik Muhammad Adil Butt 《Computers, Materials & Continua》 SCIE EI 2023年第8期2551-2570,共20页
The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)... The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes. 展开更多
关键词 Brain diseases deep learning feature enhanced stacked auto encoder stack auto encoder
下载PDF
基于BiLSTM-DAE的多家族恶意域名检测算法
4
作者 张咪 彭建山 《计算机应用与软件》 北大核心 2024年第10期319-324,共6页
针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序... 针对现有恶意域名检测算法对于家族恶意域名检测精度不高和实时性不强的问题,提出一种基于BiLSTM-DAE的恶意域名检测算法。通过利用双向长短时记忆神经网络(Bi-directional Long Short Term Memory,BiLSTM)提取域名字符组合的上下文序列特征,并结合深度自编码网络(Deep Auto-Encoder,DAE)逐层压缩感知提取类内有共性和类间有区分性的强字符构词特征并进行分类。实验结果表明,与当前主流恶意域名检测算法相比,该算法在保持检测开销较小的基础上,具有更高的检测精度。 展开更多
关键词 恶意域名检测 深度自编码网络 双向长短时记忆神经网络 构词特征
下载PDF
Application of Improved Deep Auto-Encoder Network in Rolling Bearing Fault Diagnosis 被引量:1
5
作者 Jian Di Leilei Wang 《Journal of Computer and Communications》 2018年第7期41-53,共13页
Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive... Since the effectiveness of extracting fault features is not high under traditional bearing fault diagnosis method, a bearing fault diagnosis method based on Deep Auto-encoder Network (DAEN) optimized by Cloud Adaptive Particle Swarm Optimization (CAPSO) was proposed. On the basis of analyzing CAPSO and DAEN, the CAPSO-DAEN fault diagnosis model is built. The model uses the randomness and stability of CAPSO algorithm to optimize the connection weight of DAEN, to reduce the constraints on the weights and extract fault features adaptively. Finally, efficient and accurate fault diagnosis can be implemented with the Softmax classifier. The results of test show that the proposed method has higher diagnostic accuracy and more stable diagnosis results than those based on the DAEN, Support Vector Machine (SVM) and the Back Propagation algorithm (BP) under appropriate parameters. 展开更多
关键词 Fault Diagnosis ROLLING BEARING deep auto-encoder NETWORK CAPSO Algorithm Feature Extraction
下载PDF
Application of deep autoencoder model for structural condition monitoring
6
作者 PATHIRAGE Chathurdara Sri Nadith LI Jun +2 位作者 LI Ling HAO Hong LIU Wanquan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期873-880,共8页
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea... Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion. 展开更多
关键词 auto encoder non-linear regression deep auto en-coder model damage identification VIBRATION structural health monitoring
下载PDF
基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测
7
作者 陈家芳 刘钰凡 吴朗 《现代制造工程》 CSCD 北大核心 2024年第3期148-155,53,共9页
基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上... 基于传统方法预测轴承剩余使用寿命(Residual Useful Life,RUL),步骤繁多,成本昂贵,且模型不具泛化性。现有的基于深度学习(Deep Learning,DL)的预测方法,由于数据量过大,经常导致模型出现过拟合现象,从而使模型精度不高。为了克服以上缺点,提出一种基于MRSDAE-SOM结合HGRU的滚动轴承RUL预测方法。首先,使用无监督式网络流形正则化堆栈去噪自编码器(Manifold Regularization Stack Denoising Auto Encoder,MRSDAE)结合自组织映射(Self-Or-ganizing Mapping,SOM)构建轴承健康因子(Health Indicator,HI)。然后,通过分层门控循环单元(Hierarchical Gated Re-current Unit,HGRU)网络建立预测模型,HGRU网络通过加入多尺度层和密集层,使其具有捕获时序特征且集成不同时间尺度注意力信息的能力。最后,通过实验验证表明,相比于其他基于数据驱动的方法,所提方法构建健康因子使用无监督方式,高效快捷且便于应用;预测模型泛化能力好,并有效防止了过拟合现象,实现了更高的预测精度。 展开更多
关键词 深度学习 剩余使用寿命 流形正则化堆栈去噪自编码器 分层门控循环单元
下载PDF
一种融合AutoEncoder与CNN的混合算法用于图像特征提取 被引量:19
8
作者 刘兴旺 王江晴 徐科 《计算机应用研究》 CSCD 北大核心 2017年第12期3839-3843,3847,共6页
深度学习方法在图像的特征提取方面具有优势。针对传统特征提取方法需要先验知识的不足,提出一种自动编码器(Auto Encoder)与卷积神经网络(convolutional neural network,CNN)相结合的深度学习特征提取方法。该方法给Auto Encoder加入... 深度学习方法在图像的特征提取方面具有优势。针对传统特征提取方法需要先验知识的不足,提出一种自动编码器(Auto Encoder)与卷积神经网络(convolutional neural network,CNN)相结合的深度学习特征提取方法。该方法给Auto Encoder加入快速稀疏性控制,据此对图像训练出基本构件,并初始化CNN的卷积核;同时,给CNN加入了滤波机制,使输出特征保持稀疏性。实验结果表明,在Minist手写数字库和Yale人脸库的识别效果上,提出的特征提取方法均取得了较好的结果,实验进一步通过交叉验证T检验指出,引入滤波机制的特征提取模型优于没有采用滤波机制的模型。 展开更多
关键词 深度学习 卷积神经网络 自动编码器 滤波 稀疏控制
下载PDF
基于AutoEncoder的油气管道控制系统异常状态监测方法 被引量:6
9
作者 梁凤勤 高媛 +3 位作者 刘功银 黄建国 周权 盛瀚民 《电子测量与仪器学报》 CSCD 北大核心 2019年第12期10-18,共9页
压缩机控制电路的健康状态管理在管道运输中至关重要。通常油气管道压缩机系统部署地点远离城市,环境恶劣,且负荷高、工作时间长,因此故障频发。构建可靠的健康状态检测模型通常需要大量的故障样本,然而在实际数据中,故障样本相对稀缺... 压缩机控制电路的健康状态管理在管道运输中至关重要。通常油气管道压缩机系统部署地点远离城市,环境恶劣,且负荷高、工作时间长,因此故障频发。构建可靠的健康状态检测模型通常需要大量的故障样本,然而在实际数据中,故障样本相对稀缺。采用一种基于自编码器(auto encoder,AE)的单分类方法对油气管道控制系统的异常状态进行辨识。该模型仅需对系统的正常工作状态进行学习,通过编码器可实现特征的自适应提取,从而对数据进行抽象表示,并获得较好的非线性映射能力;当数据分布异常时,系统可区分其与正常信号间的差异,并进行预警。实验部分采用西部输油管道控制系统中实地获取的通信解码信号以及电源信号进行验证,并以单分类支持向量机方法作对比实验,表明了所提出方法的有效性。 展开更多
关键词 故障预警 故障诊断和健康管理 单分类学习 自编码器 深度学习
下载PDF
基于SDAE_SVDD的通信辐射源个体开集识别方法 被引量:1
10
作者 刘志文 陈旗 满欣 《电子信息对抗技术》 北大核心 2023年第4期26-31,共6页
针对现有通信辐射源个体识别研究在遇到开集问题时识别性能不高的问题,提出了一种基于堆栈去噪自编码器和支持向量描述(Support Vector Data Description,SVDD)的开集识别方法。该方法通过堆栈去噪自编码器实现降噪和特征压缩提取,将特... 针对现有通信辐射源个体识别研究在遇到开集问题时识别性能不高的问题,提出了一种基于堆栈去噪自编码器和支持向量描述(Support Vector Data Description,SVDD)的开集识别方法。该方法通过堆栈去噪自编码器实现降噪和特征压缩提取,将特征输入SVDD进行通信辐射源个体开集识别实验。结果表明,在不同开放度下,该方法可以将未知通信辐射源个体和已知通信辐射源个体以高准确率区分出来,进而将开集识别转为闭集识别。同时,对已知通信辐射源个体识别有很好的识别准确率和抗噪声能力。 展开更多
关键词 辐射源个体识别 开集识别 深度学习 自编码器 SVDD
下载PDF
Bridge the Gap Between Full-Reference and No-Reference:A Totally Full-Reference Induced Blind Image Quality Assessment via Deep Neural Networks 被引量:2
11
作者 Xiaoyu Ma Suiyu Zhang +1 位作者 Chang Liu Dingguo Yu 《China Communications》 SCIE CSCD 2023年第6期215-228,共14页
Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success ach... Blind image quality assessment(BIQA)is of fundamental importance in low-level computer vision community.Increasing interest has been drawn in exploiting deep neural networks for BIQA.Despite of the notable success achieved,there is a broad consensus that training deep convolutional neural networks(DCNN)heavily relies on massive annotated data.Unfortunately,BIQA is typically a small sample problem,resulting the generalization ability of BIQA severely restricted.In order to improve the accuracy and generalization ability of BIQA metrics,this work proposed a totally opinion-unaware BIQA in which no subjective annotations are involved in the training stage.Multiple full-reference image quality assessment(FR-IQA)metrics are employed to label the distorted image as a substitution of subjective quality annotation.A deep neural network(DNN)is trained to blindly predict the multiple FR-IQA score in absence of corresponding pristine image.In the end,a selfsupervised FR-IQA score aggregator implemented by adversarial auto-encoder pools the predictions of multiple FR-IQA scores into the final quality predicting score.Even though none of subjective scores are involved in the training stage,experimental results indicate that our proposed full reference induced BIQA framework is as competitive as state-of-the-art BIQA metrics. 展开更多
关键词 deep neural networks image quality assessment adversarial auto encoder
下载PDF
Fault Diagnosis for Rolling Bearings with Stacked Denoising Auto-encoder of Information Aggregation
12
作者 Li Zhang Xin Gao Xiao Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期69-77,共9页
Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rollin... Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms. 展开更多
关键词 deep learning stacked DENOISING auto-encoder FAULT diagnosis PCA classification
下载PDF
Early Diagnosis of Lung Tumors for Extending Patients’ Life Using Deep Neural Networks
13
作者 A.Manju R.Kaladevi +6 位作者 Shanmugasundaram Hariharan Shih-Yu Chen Vinay Kukreja Pradip Kumar Sharma Fayez Alqahtani Amr Tolba Jin Wang 《Computers, Materials & Continua》 SCIE EI 2023年第7期993-1007,共15页
The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tum... The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques.Computer-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor detected.The application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation tasks.This research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold segmentation.The Honey hook process categorizes lung cancer based on characteristics retrieved using several classifiers.Considering this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using DNN.The proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)classifier.The study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal patients.In contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the network.It is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves. 展开更多
关键词 Lung tumor deep wave auto encoder decision tree classifier deep neural networks extraction techniques
下载PDF
基于NVAE和OB-Mix的小样本数据增强方法 被引量:1
14
作者 杨玮 钟名锋 +3 位作者 杨根 侯至丞 王卫军 袁海 《计算机工程与应用》 CSCD 北大核心 2024年第2期103-112,共10页
由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过... 由于深度学习模型对海量标注数据的依赖性较高,导致目前许多前沿性目标检测理论难以适用于工业检测领域。为此,提出一种基于NVAE图像生成和OB-Mix数据增强的小样本数据扩充方法。具体方法是通过NVAE构建检测目标的数据分布模型,再通过采样潜变量的方式生成与真实目标图像属于同一分布的全新目标图像。在得到生成目标图像后,提出了OB-Mix数据增强策略,将生成目标图像与背景图像进行随机位置融合以构建出新的图像数据,从而提高网络的定位能力及泛化能力。方法在仅使用474张标注图像以及400张无检测目标的背景图像情况下,使YOLOv5的检测精确率达到95.86%,相比于不使用该方法的结果提高了17.60个百分点。 展开更多
关键词 数据增强 小样本 数据生成 新派变分自编码器(NVAE) 表面缺陷检测 深度学习
下载PDF
基于DAE-BP的炉辊轴承外圈裂纹识别
15
作者 贾宇巍 牛锐祥 《山西冶金》 CAS 2023年第10期7-9,共3页
为提高对炉辊轴承外圈裂纹识别的准确率,提出了基于DAE-BP的炉辊轴承外圈裂纹识别方法。先通过深度自编码器(DAE)对炉辊轴承振动信号的时域指标进行特征提取并重构,然后融合重构数据与原始时域指标数据,最后利用融合数据训练BP神经网络... 为提高对炉辊轴承外圈裂纹识别的准确率,提出了基于DAE-BP的炉辊轴承外圈裂纹识别方法。先通过深度自编码器(DAE)对炉辊轴承振动信号的时域指标进行特征提取并重构,然后融合重构数据与原始时域指标数据,最后利用融合数据训练BP神经网络。实验结果表明,该提出方法对炉辊轴承外圈裂纹识别的准确率达到了99.61%,优于BP诊断方法,有效提高了识别准确率。 展开更多
关键词 深度自编码器 BP神经网络 炉辊轴承 裂纹识别
下载PDF
基于深度学习的桡动脉脉搏波重构方法
16
作者 艾海明 张清利 +3 位作者 宋现涛 王野 张松 杨益民 《中国医学物理学杂志》 CSCD 2024年第4期472-478,共7页
目的:针对从指端脉搏波重构出桡动脉脉搏波的难题,提出一种基于深度学习的重构方法。方法:使用四通道数据采集系统PowerLab分别无创采集指端脉搏波和桡动脉脉搏波,对脉搏波信号噪声源进行分析,利用去基线算法、小波变换去噪算法、归一... 目的:针对从指端脉搏波重构出桡动脉脉搏波的难题,提出一种基于深度学习的重构方法。方法:使用四通道数据采集系统PowerLab分别无创采集指端脉搏波和桡动脉脉搏波,对脉搏波信号噪声源进行分析,利用去基线算法、小波变换去噪算法、归一化预处理算法,得到稳定的信号波形。设计变分自编码器(VAE)网络模型结构参数,利用十折交叉验证法对744例受试者数据进行训练,建立桡动脉脉搏波预测模型。设置学习率、随机失活、正则化项共3项超参数,对VAE网络模型进行优化。结果:186例受试者桡动脉脉搏波重构和同步检测结果表明:低阻型和高阻型指端脉搏波经VAE网络模型建模后5%K差、20%K差、K差总方差、FIT分别为49.10%、96.70%、89.74和75.80%;低阻型和高阻型指端脉搏波经VAE网络优化模型建模后5%K差、20%K差、K差总方差、FIT分别为48.50%、94.50%、73.74和66.30%。结论:VAE网络模型建模及其优化方法可用于桡动脉脉搏波重构,重构精度较高,并具有较强的鲁棒性和泛化能力。 展开更多
关键词 深度学习 脉搏波 波形重构 模型优化 变分自编码器
下载PDF
基于深度学习的电力工程数据异常检测模型设计
17
作者 王斌 房向阳 +1 位作者 毛华 孙岳 《电子设计工程》 2024年第2期111-115,共5页
针对当前电力工程数据质量较差的问题,文中开展了基于深度学习的电力工程数据异常检测模型设计研究。提出了局部密度因子的改进方案,设计了一种基于深度自编码器(DAE)与高斯过程回归(GPR)的电力异常数据检测算法。该算法利用DAE模型实... 针对当前电力工程数据质量较差的问题,文中开展了基于深度学习的电力工程数据异常检测模型设计研究。提出了局部密度因子的改进方案,设计了一种基于深度自编码器(DAE)与高斯过程回归(GPR)的电力异常数据检测算法。该算法利用DAE模型实现了电力工程数据的重构,且将改进的局部密度因子、编码器输出数据及重构误差等作为GPR模型的输入,进而完成对异常数据的精准检测。仿真算例结果表明,与DAE、AE算法相比,所提算法的准确率可达89.2%,且稳定性更强。同时在实际应用中还可发现,通过加强对工程量及费用类型数据的校核管控,能够有效提升电力工程数据的质量,从而为电网的精细化运营提供数据基础。 展开更多
关键词 深度学习 异常检测 高斯过程回归 深度自编码器
下载PDF
跳连接变分自编码器与CNN相结合的滚动轴承故障诊断方法
18
作者 张洪亮 余其源 王锐 《机械科学与技术》 CSCD 北大核心 2024年第4期681-689,共9页
针对滚动轴承故障率小、不易收集故障数据的问题,提出基于跳跃连接变分自编码器与宽核深度卷积神经网络相结合的小样本故障诊断方法。该方法首先在变分自编码器的编码和解码之间引入跳跃连接结构,并将Tanh作为网络的激活函数,进而提高... 针对滚动轴承故障率小、不易收集故障数据的问题,提出基于跳跃连接变分自编码器与宽核深度卷积神经网络相结合的小样本故障诊断方法。该方法首先在变分自编码器的编码和解码之间引入跳跃连接结构,并将Tanh作为网络的激活函数,进而提高生成样本的特征多样性;其次,构建宽核深度卷积网络诊断模型,该模型可以提高从振动信号中提取故障特征的能力;最后,经生成样本扩充的数据集作为模型输入,提高训练集包含的特征信息量,实现小样本下的故障诊断。实验分析表明,所提方法在小样本情形下能生成有效的伪样本并具有较高的诊断精度。 展开更多
关键词 故障诊断 跳跃连接变分自编码器 数据生成 宽核深度卷积神经网络
下载PDF
偏置剪枝叠式自编码回声状态网络的时序预测
19
作者 刘丽丽 刘玉玺 王河山 《计算机工程与设计》 北大核心 2024年第1期212-219,共8页
针对大多数模型对时间序列预测数据的预测准确率较低,为提升时间序列的预测精度,提出一种基于Biased Drop-weight的偏置剪枝叠式自编码回声状态网络(BD-AE-SGESN)的深度模型。以叠式ESN为多层深度网络框架,提出一种生成式AE算法生成每... 针对大多数模型对时间序列预测数据的预测准确率较低,为提升时间序列的预测精度,提出一种基于Biased Drop-weight的偏置剪枝叠式自编码回声状态网络(BD-AE-SGESN)的深度模型。以叠式ESN为多层深度网络框架,提出一种生成式AE算法生成每一层的输入权值,利用BD算法根据输入权重激活值进行剪枝。对比实验结果表明,该模型能够有效提升预测准确率,在3个不同的数据上,相比其它模型有着较小的预测误差和较高的稳定度。 展开更多
关键词 多变量时间序列 回声状态网络 预测模型 剪枝 自编码 深度网络 权重优化
下载PDF
面向电力设备异常检测的深度自编码支持向量数据描述模型研究
20
作者 耿波 潘曙辉 董晓旭 《湖南电力》 2024年第1期119-127,共9页
针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表... 针对深度自编码支持向量数据描述模型对电力设备部分异常区分能力不足的问题,提出自监督混合专家增强的深度自编码支持向量数据描述模型,构造多种自监督变换数据集模拟潜在未知异常,引入自监督分类和掩码重构任务以学习更具区分性的表示。此外,将编码器部分改造为混合专家模型结构,将数据分配给不同专家子模块进行专业化的学习,使异常决策边界更清晰。在4个公开数据集和3个电厂设备数据集上的实验结果证实了自监督学习和混合专家模型的有效性。 展开更多
关键词 异常检测 深度自编码支持向量数据描述 自监督学习 混合专家模型
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部