Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division ...Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness.展开更多
In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network...In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions.展开更多
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v...An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system.展开更多
为提高风电机组运行效率,降低风电场运营成本,对风电机组运行状态监测显得尤为重要,提出一种基于数据采集与监控(supervisory control and data acquisition,简称SCADA)系统和萤火虫改进麻雀搜索算法优化深度置信网络(firefly improved ...为提高风电机组运行效率,降低风电场运营成本,对风电机组运行状态监测显得尤为重要,提出一种基于数据采集与监控(supervisory control and data acquisition,简称SCADA)系统和萤火虫改进麻雀搜索算法优化深度置信网络(firefly improved sparrow search algorithm optimized deep belief network,简称FISSA-DBN)的风电机组状态监测新方法。首先,对SCADA数据进行预处理分析,并利用专家系统和皮尔逊相关系数分析,相关分析选取输入参数和输出参数;其次,利用预处理数据集建立基于FISSA-DBN的风电机组运行状态监测新模型,根据模型预测值和实际输出值之间的重构值误差,以及指数加权移动平均阈值(exponentially weighted moving average,简称EWMA)判断是否有异常;最后,以华东某风电场实际数据为例进行实例验证。结果表明,所提出方法的预警时间比实际记录时间最早可提前4 d多。同时,将所提出方法与其他方法进行对比,结果表明该方法预警时间提前,模型预测误差更小。展开更多
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We...The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.展开更多
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based...High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.展开更多
文摘Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness.
基金supported by the National Key Research and Development Program of China(2017YFB1401300,2017YFB1401304)the National Natural Science Foundation of China(61702211,L1724007,61902203)+3 种基金Hubei Provincial Science and Technology Program of China(2017AKA191)the Self-Determined Research Funds of Central China Normal University(CCNU)from the Colleges’Basic Research(CCNU17QD0004,CCNU17GF0002)the Natural Science Foundation of Shandong Province(ZR2017QF015)the Key Research and Development Plan–Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY020101)。
文摘In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions.
基金supported by Inha University Research Grant,Korea
文摘An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system.
文摘为提高风电机组运行效率,降低风电场运营成本,对风电机组运行状态监测显得尤为重要,提出一种基于数据采集与监控(supervisory control and data acquisition,简称SCADA)系统和萤火虫改进麻雀搜索算法优化深度置信网络(firefly improved sparrow search algorithm optimized deep belief network,简称FISSA-DBN)的风电机组状态监测新方法。首先,对SCADA数据进行预处理分析,并利用专家系统和皮尔逊相关系数分析,相关分析选取输入参数和输出参数;其次,利用预处理数据集建立基于FISSA-DBN的风电机组运行状态监测新模型,根据模型预测值和实际输出值之间的重构值误差,以及指数加权移动平均阈值(exponentially weighted moving average,简称EWMA)判断是否有异常;最后,以华东某风电场实际数据为例进行实例验证。结果表明,所提出方法的预警时间比实际记录时间最早可提前4 d多。同时,将所提出方法与其他方法进行对比,结果表明该方法预警时间提前,模型预测误差更小。
文摘The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks.
基金supported in part by the National Natural Science Foundation of China under Grant No.61771474in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX212243+2 种基金in part by the Young Talents of Xuzhou Science and Technology Plan Project under Grant No.KC19051in part by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2021D02in part by the Open Fund of Information Photonics and Optical Communications (IPOC) (BUPT)。
文摘High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.