期刊文献+
共找到320篇文章
< 1 2 16 >
每页显示 20 50 100
Deep Belief Network for Lung Nodule Segmentation and Cancer Detection
1
作者 Sindhuja Manickavasagam Poonkuzhali Sugumaran 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期135-151,共17页
Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division ... Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness. 展开更多
关键词 Chicken-sine cosine algorithm deep belief network lung cancer Subject classification codes artificial intelligence machine learning segmentation
下载PDF
结合遗传算法的RF-DBN入侵检测方法
2
作者 任俊玲 诸于铭 《中国科技论文》 CAS 2024年第8期937-944,共8页
针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行... 针对目前不平衡数据集少数类攻击样本识别率较低的问题,提出一种BorderlineSMOTE、随机森林和遗传算法(genetic algorithm,GA)-深度信念网络(deep belief network,DBN)相结合的入侵检测方法。首先采用BorderlineSMOTE对少数类样本进行过采样,减少数据集的不平衡度;然后使用随机森林算法实现正异常数据分类,筛选出异常数据;最后采用经GA优化的DBN网络对异常数据进行进一步分类。使用网络安全数据集CICIDS2017进行验证,该方法的准确率达到了99.85%,而且少数类样本的识别精度也有明显提高。 展开更多
关键词 随机森林 遗传算法 BorderlineSMOTE 深度信念网络 数据不平衡 入侵检测
下载PDF
基于DBN和BES-LSSVM的矿用压风机异常状态识别方法
3
作者 李敬兆 王克定 +2 位作者 王国锋 郑鑫 石晴 《流体机械》 CSCD 北大核心 2024年第3期89-97,共9页
针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督... 针对矿用压风机这类分布式系统的异常类别复杂、识别精度低等问题,提出了一种基于深度置信网络(DBN)和最小二乘支持向量机(LSSVM)的异常状态识别方法。首先,分析压风机组成系统及其运行机理,确定常见的异常状态类型;其次,采用DBN无监督学习方式充分挖掘监测数据中异常特征并快速提取;然后,利用秃鹰搜索算法(BES)优化LSSVM的超参数,构建最优的BES-LSSVM分类模型;最后,将DBN提取的异常特征作为BES-LSSVM模型的输入,对矿用压风机异常状态进行识别。试验验证与对比分析结果表明,相较于GA,PSO,GWO算法,BES算法的求解精度和收敛速度均有所提高,同时DBN-BES-LSSVM模型在测试集上平均识别精度达到94.65%,较PCA-LSSVM模型、DBN模型和DBN-LSSVM模型的识别精度分别提高了10.53%,5.84%和3.76%,验证了DBN-BES-LSSVM模型在矿用压风机异常特征提取以及特征识别方面的优越性。 展开更多
关键词 矿用压风机 深度置信网络 秃鹰搜索算法 最小二乘支持向量机 异常识别
下载PDF
基于CS-DBN的锂电池剩余寿命预测 被引量:1
4
作者 梁佳佳 何晓霞 肖浩逸 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期251-259,共9页
为了更准确地对锂电池剩余使用寿命进行预测,提出一种基于布谷鸟算法(CS)和深度信念网络(DBN)的预测模型。首先,引进16个影响锂电池RUL的健康因子(HI),通过随机森林(RF)选择出对于剩余寿命预测较为重要的9个HI。随后用CS去寻优深度信念... 为了更准确地对锂电池剩余使用寿命进行预测,提出一种基于布谷鸟算法(CS)和深度信念网络(DBN)的预测模型。首先,引进16个影响锂电池RUL的健康因子(HI),通过随机森林(RF)选择出对于剩余寿命预测较为重要的9个HI。随后用CS去寻优深度信念网络模型中隐藏层的参数,通过寻优,建立最优的深度信念网络预测模型。最后,使用马里兰大学所收集的电池数据(CALCE)进行实验,结果表明:所提出的CS-DBN模型的拟合优度高达98%,且与其他模型的预测结果进行对比,具有更小的误差,验证了所提方法的有效性。 展开更多
关键词 锂离子电池 剩余使用寿命 随机森林 深度信念网络 布谷鸟算法 健康因子
下载PDF
A Real-Time and Ubiquitous Network Attack Detection Based on Deep Belief Network and Support Vector Machine 被引量:8
5
作者 Hao Zhang Yongdan Li +2 位作者 Zhihan Lv Arun Kumar Sangaiah Tao Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期790-799,共10页
In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network... In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions. 展开更多
关键词 deep belief network(dbn) flow calculation frequent pattern INTRUSION detection SLIDING WINDOW support vector machine(SVM)
下载PDF
一种基于SSA-DBN的室内可见光指纹定位算法
6
作者 王鹏云 邵建华 +3 位作者 王宗生 程悦 杨薇 杜聪 《激光杂志》 CAS 北大核心 2024年第1期159-165,共7页
室内可见光定位在精度方面有着较高的要求,针对这一问题,文中提出了一种麻雀搜索算法(Sparrow Search Algorithm,SSA)优化深度置信网络(Deep Belief Network,DBN)的室内可见光指纹定位算法。首先,采用信号强度特征值与位置坐标建立离线... 室内可见光定位在精度方面有着较高的要求,针对这一问题,文中提出了一种麻雀搜索算法(Sparrow Search Algorithm,SSA)优化深度置信网络(Deep Belief Network,DBN)的室内可见光指纹定位算法。首先,采用信号强度特征值与位置坐标建立离线指纹库;其次,利用麻雀搜索算法较好的全局探索和局部开发的能力,对深度置信网络的初始权阈值进行优化,建立网络训练模型,对待定位目标的位置进行预测,避免了DBN陷入局部最优以及收敛速度较慢的问题。最后,利用已建立的离线指纹库数据,计算定位误差并分析。在4 m×4 m×2.5 m的空间中进行实验,结果表明:文中算法的平均定位误差为3.51 cm,定位误差在6 cm以内的概率为89.9%,与DBN定位算法相比,平均定位误差下降了约22.5%。 展开更多
关键词 可见光 室内定位 麻雀搜索算法 深度置信网络
下载PDF
基于DBN的液压泵劣化程度评估方法研究
7
作者 李振宝 伊明 +2 位作者 李富强 张磊 姜万录 《机床与液压》 北大核心 2024年第14期219-226,共8页
针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括... 针对轴向柱塞泵中心弹簧失效故障难以有效评估的问题,提出一种基于梅尔频率倒谱系数(MFCC)和深度信念神经网络(DBN)的液压泵劣化程度评估方法。对现场采集的正常数据和3种不同程度中心弹簧失效故障的液压泵振动信号进行信号预处理,包括预加重、分帧和加窗等;对预处理后的信号进行快速傅里叶变换(FFT),得到其频率谱和功率谱,然后让其通过Mel滤波器组,得到信号的对数能量;最后对对数能量进行离散余弦变换,得到信号的倒谱系数和一阶差分系数,并以此构成特征向量。基于DBN方法搭建深度学习模型,对特征向量进行学习,将测试样本导入深度学习模型,对中心弹簧失效程度进行评估,并将倒谱系数和一阶差分系数的识别结果进行对比。结果表明:当选择倒谱系数为特征向量时,具有较高的识别精度,能够有效识别轴向柱塞泵中心弹簧的性能劣化程度。 展开更多
关键词 梅尔频率倒谱系数 深度信念神经网络 轴向柱塞泵 劣化评估
下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
8
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(dbn)
下载PDF
基于PSO-DBN的配电网可靠性分析研究
9
作者 张俊成 崔志威 +1 位作者 陶毅刚 黎敏 《自动化仪表》 CAS 2024年第5期112-117,共6页
为解决缺失数据等条件下配电网的可靠性评估问题,针对配电网可靠性评估时存在评估效果差、计算量大、执行效率低等情况,基于粒子群优化-深度信念网络(PSO-DBN)对配电网可靠性进行分析。首先,设计了基于生成对抗网络(GAN)的电力数据增强... 为解决缺失数据等条件下配电网的可靠性评估问题,针对配电网可靠性评估时存在评估效果差、计算量大、执行效率低等情况,基于粒子群优化-深度信念网络(PSO-DBN)对配电网可靠性进行分析。首先,设计了基于生成对抗网络(GAN)的电力数据增强模型,从而改善电力数据缺失和不平衡等问题。其次,建立了结合深度信念网络(DBN)和粒子群优化(PSO)模型的优化学习网络,从而得到更准确的配电网可靠性分析结果。以IEEE39电力节点系统为基础,对所提模型进行仿真与分析。仿真结果表明,所提模型性能最优。该研究能够为配电网可靠性评估、管理及稳定运行提供借鉴。 展开更多
关键词 电力系统 配电网 可靠性评估 深度学习 深度信念网络 粒子群优化 仿真分析
下载PDF
基于WPT-ARO-DBN/WPT-EPO-DBN模型的月含沙量多步预测
10
作者 高雪梅 崔东文 《人民珠江》 2024年第3期69-78,共10页
准确的含沙量多步预测对于区域水土流失治理、防洪减灾等具有重要意义。为提高含沙量多步预测精度,改进深度信念网络(DBN)的预测性能,基于小波包变换(WPT),分别提出人工兔优化(ARO)算法、鹰栖息优化(EPO)算法与DBN组合的月含沙量多步预... 准确的含沙量多步预测对于区域水土流失治理、防洪减灾等具有重要意义。为提高含沙量多步预测精度,改进深度信念网络(DBN)的预测性能,基于小波包变换(WPT),分别提出人工兔优化(ARO)算法、鹰栖息优化(EPO)算法与DBN组合的月含沙量多步预测模型,通过云南省龙潭站月含沙量时序数据对模型进行验证。首先利用WPT对实例月含沙量时序数据进行3层分解处理,得到8个更具规律的子序列分量;其次介绍ARO、EPO算法原理,利用ARO、EPO对DBN隐藏层神经元数等超参数进行寻优,建立WPT-ARO-DBN、WPT-EPO-DBN预测模型,并构建WPT-PSO(粒子群算法)-DBN、WPT-DBN作对比分析模型;最后利用4种模型对各子序列分量进行预测,将预测值叠加得到最终月含沙量多步预测结果。结果表明:(1)WPT-ARO-DBN、WPT-EPO-DBN模型对实例超前1步—超前4步月含沙量具有满意的预测效果,对超前5步具有较好的预测结果,对超前6步、超前7步的预测效果一般,对超前8步的预测精度较差,已不能满足预测精度需求;(2)WPT-ARO-DBN、WPT-EPO-DBN模型的多步预测效果要优于WPT-PSO-DBN模型,远优于WPT-DBN模型,具有更高的预测精度、更好的泛化能力和更大的预测步长;(3)ARO、EPO能有效优化DBN超参数,提高DBN预测性能,优化效果优于PSO,WPT-ARO-DBN、WPT-EPO-DBN模型能充分发挥WPT、新型群体智能算法和DBN网络优势,提高月含沙量多步预测精度,且预测精度随着预测步数的增加而降低。 展开更多
关键词 月含沙量预测 深度信念网络 人工兔优化算法 鹰栖息优化算法 小波包变换 组合模型
下载PDF
基于Deep Belief Nets的中文名实体关系抽取 被引量:71
11
作者 陈宇 郑德权 赵铁军 《软件学报》 EI CSCD 北大核心 2012年第10期2572-2585,共14页
关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propa... 关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propagation)网络组成的神经网络分类器.RBM网络以确保特征向量映射达到最优,最后一层BP网络分类RBM网络的输出特征向量,从而训练实体关系分类器.在ACE04语料上进行的相关测试,一方面证明了字特征比词特征更适用于中文关系抽取任务;另一方面设计了3组不同的实验,分别使用正确的实体类别信息、通过实体类型分类器得到实体类型信息和不使用实体类型信息,用以比较实体类型信息对关系抽取效果的影响.实验结果表明,DBN非常适用于基于高维空间特征的信息抽取任务,获得的效果比SVM和反向传播网络更好. 展开更多
关键词 dbn(deep belief nets) 神经网络 关系抽取 深层网络 字特征
下载PDF
基于油中溶解气体分析的DBN-SSAELM变压器故障诊断方法 被引量:26
12
作者 王艳 李伟 +2 位作者 赵洪山 张嘉琳 申宗旺 《电力系统保护与控制》 EI CSCD 北大核心 2023年第4期32-42,共11页
为了保证油浸式变压器故障诊断精度的同时,提高诊断方法的收敛速度以及泛化能力,提出一种基于DBN-SSAELM的变压器故障诊断方法。首先,利用深度置信网络(deep belief networks, DBN)对油中溶解气体浓度比值数据进行特征提取。其次,利用... 为了保证油浸式变压器故障诊断精度的同时,提高诊断方法的收敛速度以及泛化能力,提出一种基于DBN-SSAELM的变压器故障诊断方法。首先,利用深度置信网络(deep belief networks, DBN)对油中溶解气体浓度比值数据进行特征提取。其次,利用具有较强学习能力的极限学习机(extreme learning machine, ELM)替换传统DBN分类模型中的Softmax分类器,深入分析特征值与故障类型之间的关联性,提高模型的收敛速度。然后,利用麻雀搜索算法(sparrow search algorithm, SSA)优化ELM模型的输入权值和隐藏层节点偏置,以提高模型诊断结果的准确率和稳定性。最后,选用准确率、查全率、查准率和收敛速度对优化前后的模型进行性能评估。最终实验结果表明:所提出的DBN-SSAELM变压器故障诊断方法,故障诊断准确率高、泛化能力强、稳定性好,平均准确率达到96.50%,适用于变压器故障诊断。 展开更多
关键词 变压器 故障诊断 深度置信网络 极限学习机 麻雀搜索算法
下载PDF
基于CNN-PSO-DBN的短期电力负荷预测 被引量:1
13
作者 方娜 陈浩 +1 位作者 李新新 邓心 《计算机仿真》 北大核心 2023年第10期118-122,共5页
电力负荷参数受多维因素影响,为提高短期电力负荷预测精度,提出一种基于特征参数筛选的卷积神经网络(Convolutional Neural Network, CNN)和深度信念网络(Deep Belief Network, DBN)结合的负荷预测模型。首先通过对多维输入参数进行优... 电力负荷参数受多维因素影响,为提高短期电力负荷预测精度,提出一种基于特征参数筛选的卷积神经网络(Convolutional Neural Network, CNN)和深度信念网络(Deep Belief Network, DBN)结合的负荷预测模型。首先通过对多维输入参数进行优化筛选,利用CNN进行特征提取,将提取的特征向量输入到DBN网络中进行训练,得出预测结果。由于DBN网络权值的随机初始化,采用粒子群优化(Particle Swarm Optimization, PSO)算法迭代求解权重最优值。仿真结果表明,上述方法较于其它网络模型具有更好的预测性能。 展开更多
关键词 特征筛选 卷积神经网络 粒子群优化算法 深度信念网络 负荷预测
下载PDF
基于MVMD-CapSA-DBN的工业多元负荷分类研究 被引量:2
14
作者 周孟然 张易平 +6 位作者 汪胜和 马金辉 高博 胡锋 朱梓伟 汪锟 刘宇 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第3期123-130,共8页
针对多元电力负荷数据时间序列非平稳性、时序相关性和非线性等特性,为掌握电力负荷的变化规律和发展趋势,实现对电力负荷的科学管理,将工业多元负荷有功功率作为原始数据,提出MVMD-CapSA-DBN负荷分类模型.首先,利用改进停止准则的变分... 针对多元电力负荷数据时间序列非平稳性、时序相关性和非线性等特性,为掌握电力负荷的变化规律和发展趋势,实现对电力负荷的科学管理,将工业多元负荷有功功率作为原始数据,提出MVMD-CapSA-DBN负荷分类模型.首先,利用改进停止准则的变分模态分解(Variational Mode Decomposition,VMD)将数据分解,得到较为平稳的多个数据分量;之后,提取各分量能量值作为特征;最后,将0~1标准化的数据作为特征向量,输入经卷尾猴搜索算法(Capuchin Search Algorithm,CapSA)优化参数后的深度置信网络(Deep Belief Nets,DBN)信号分类.实验证明,可实现对工业多元负荷数据的有效分类,整体准确率在88.89%左右,部分负荷分类准确率可达100%. 展开更多
关键词 电力负荷 负荷分类 变分模态分解 深度信念网络 卷尾猴搜索算法
下载PDF
基于改进Adam-DBN的油井工况诊断方法 被引量:2
15
作者 王通 熊涛理 《沈阳工业大学学报》 CAS 北大核心 2023年第3期330-335,共6页
针对深度信念网络在油井工况诊断中由于梯度扩散导致训练效果差,模型诊断准确率不高的问题,提出一种基于改进Adam优化算法的深度信念网络油井工况诊断方法.以二值化处理后的示功图作为深度信念网络输入,利用对比散度算法对网络进行无监... 针对深度信念网络在油井工况诊断中由于梯度扩散导致训练效果差,模型诊断准确率不高的问题,提出一种基于改进Adam优化算法的深度信念网络油井工况诊断方法.以二值化处理后的示功图作为深度信念网络输入,利用对比散度算法对网络进行无监督预训练,以获取较优的初始权值;在反向传播微调网络过程中,运用动量法预测梯度下降位置,更新梯度下降方向,并通过学习率自适应选择下降步长,避免梯度扩散降低模型训练效果.某采油平台油井上的仿真实验结果表明,基于改进Adam优化算法的深度信念网络对油井工况的识别准确率较高,能更好地满足油田生产实际需求. 展开更多
关键词 工况诊断 特征提取 深度信念网络 受限玻尔兹曼机 示功图 梯度下降 优化算法 油井
下载PDF
基于VMD-ARIMA-DBN的短期电力负荷预测 被引量:10
16
作者 方娜 陈浩 +1 位作者 邓心 肖威 《电力系统及其自动化学报》 CSCD 北大核心 2023年第6期59-65,共7页
针对短期电力负荷预测精度不足的问题,提出一种基于变分模态分解、深度信念网络、差分自回归移动平均模型的组合预测模型。首先选取电力负荷影响较大的相关参数,采用变分模态分解将负荷数据分解为低频和高频两种分量;然后利用差分自回... 针对短期电力负荷预测精度不足的问题,提出一种基于变分模态分解、深度信念网络、差分自回归移动平均模型的组合预测模型。首先选取电力负荷影响较大的相关参数,采用变分模态分解将负荷数据分解为低频和高频两种分量;然后利用差分自回归移动平均模型和深度信念网络分别对低频和高频两种分量进行预测,为克服深度信念网络参数随机化的缺陷,采用粒子群优化算法优化模型以进一步提高精度;最后组合各模型结果得到最终预测值。实验结果表明,该组合模型较其他模型具有更好的预测性能。 展开更多
关键词 短期负荷预测 变分模态分解 深度信念网络 粒子群优化算法 差分自回归移动平均模型
下载PDF
基于FISSA-DBN模型的风电机组运行状态监测 被引量:4
17
作者 周凌 赵前程 +2 位作者 朱岸锋 杨三英 阳雪兵 《振动.测试与诊断》 EI CSCD 北大核心 2023年第1期80-87,199,共9页
为提高风电机组运行效率,降低风电场运营成本,对风电机组运行状态监测显得尤为重要,提出一种基于数据采集与监控(supervisory control and data acquisition,简称SCADA)系统和萤火虫改进麻雀搜索算法优化深度置信网络(firefly improved ... 为提高风电机组运行效率,降低风电场运营成本,对风电机组运行状态监测显得尤为重要,提出一种基于数据采集与监控(supervisory control and data acquisition,简称SCADA)系统和萤火虫改进麻雀搜索算法优化深度置信网络(firefly improved sparrow search algorithm optimized deep belief network,简称FISSA-DBN)的风电机组状态监测新方法。首先,对SCADA数据进行预处理分析,并利用专家系统和皮尔逊相关系数分析,相关分析选取输入参数和输出参数;其次,利用预处理数据集建立基于FISSA-DBN的风电机组运行状态监测新模型,根据模型预测值和实际输出值之间的重构值误差,以及指数加权移动平均阈值(exponentially weighted moving average,简称EWMA)判断是否有异常;最后,以华东某风电场实际数据为例进行实例验证。结果表明,所提出方法的预警时间比实际记录时间最早可提前4 d多。同时,将所提出方法与其他方法进行对比,结果表明该方法预警时间提前,模型预测误差更小。 展开更多
关键词 风电机组 深度置信网络 状态监测 麻雀搜索算法 指数加权移动平均阈值
下载PDF
Optimizing Deep Learning Parameters Using Genetic Algorithm for Object Recognition and Robot Grasping 被引量:2
18
作者 Delowar Hossain Genci Capi Mitsuru Jindai 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期11-15,共5页
The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We... The performance of deep learning(DL)networks has been increased by elaborating the network structures. However, the DL netowrks have many parameters, which have a lot of influence on the performance of the network. We propose a genetic algorithm(GA) based deep belief neural network(DBNN) method for robot object recognition and grasping purpose. This method optimizes the parameters of the DBNN method, such as the number of hidden units, the number of epochs, and the learning rates, which would reduce the error rate and the network training time of object recognition. After recognizing objects, the robot performs the pick-andplace operations. We build a database of six objects for experimental purpose. Experimental results demonstrate that our method outperforms on the optimized robot object recognition and grasping tasks. 展开更多
关键词 deep learning(DL) deep belief neural network(dbnN) genetic algorithm(GA) object recognition robot grasping
下载PDF
HUID:DBN-Based Fingerprint Localization and Tracking System with Hybrid UWB and IMU 被引量:3
19
作者 Junchang Sun Rongyan Gu +4 位作者 Shiyin Li Shuai Ma Hongmei Wang Zongyan Li Weizhou Feng 《China Communications》 SCIE CSCD 2023年第2期139-154,共16页
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based... High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively. 展开更多
关键词 Ultra-wideband(UWB) inertial measurement unit(IMU) fingerprints positioning NLoS identification estimated errors mitigation deep belief network(dbn) radial basis function(RBF)
下载PDF
基于多信息融合和DA-DBN的苹果等级判别
20
作者 陈海霞 贾志娟 赵云平 《食品与机械》 CSCD 北大核心 2023年第10期138-145,共8页
目的:为了提高苹果等级判定模型的精度,建立苹果等级判定方法。方法:提出一种多信息融合和蜻蜓算法改进深度置信网络的苹果等级判定模型。对苹果图像进行数据增强、归一化、高斯滤波、灰度化等预处理,提取苹果图像的HSV颜色特征、LBP纹... 目的:为了提高苹果等级判定模型的精度,建立苹果等级判定方法。方法:提出一种多信息融合和蜻蜓算法改进深度置信网络的苹果等级判定模型。对苹果图像进行数据增强、归一化、高斯滤波、灰度化等预处理,提取苹果图像的HSV颜色特征、LBP纹理特征和HOG形状特征。针对DBN模型性能受参数选择的影响,运用DA算法优化选择DBN模型的网络参数,提出一种多信息融合和DA-DBN的苹果等级判定模型。结果:与GA-DBN、PSO-DBN、GWO-DBN和DBN相比,基于DA-DBN的苹果等级判定模型的精度最高。结论:蜻蜓算法优化DBN模型可以有效提高苹果等级判定模型的精度。 展开更多
关键词 深度置信网络 蜻蜓算法 纹理特征 颜色特征 形状特征 苹果
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部