期刊文献+
共找到1,130篇文章
< 1 2 57 >
每页显示 20 50 100
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
1
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
下载PDF
Voice activity detection based on deep belief networks using likelihood ratio 被引量:3
2
作者 KIM Sang-Kyun PARK Young-Jin LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期145-149,共5页
A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spect... A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spectral components that are assumed to follow the Gaussian probability density function(PDF). The proposed algorithm employs DBN learning in order to classify voice activity by using the input signal to calculate the likelihood ratio. Experiments show that the proposed algorithm yields improved results in various noise environments, compared to the conventional VAD algorithms. Furthermore, the DBN based algorithm decreases the detection probability of error with [0.7, 2.6] compared to the support vector machine based algorithm. 展开更多
关键词 voice activity detection likelihood ratio deep belief networks
下载PDF
Flash flood susceptibility mapping using a novel deep learning model based on deep belief network,back propagation and genetic algorithm 被引量:2
3
作者 Himan Shahabi Ataollah Shirzadi +6 位作者 Somayeh Ronoud Shahrokh Asadi Binh Thai Pham Fatemeh Mansouripour Marten Geertsema John J.Clague Dieu Tien Bui 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期146-168,共23页
Flash floods are responsible for loss of life and considerable property damage in many countries.Flood susceptibility maps contribute to flood risk reduction in areas that are prone to this hazard if appropriately use... Flash floods are responsible for loss of life and considerable property damage in many countries.Flood susceptibility maps contribute to flood risk reduction in areas that are prone to this hazard if appropriately used by landuse planners and emergency managers.The main objective of this study is to prepare an accurate flood susceptibility map for the Haraz watershed in Iran using a novel modeling approach(DBPGA)based on Deep Belief Network(DBN)with Back Propagation(BP)algorithm optimized by the Genetic Algorithm(GA).For this task,a database comprising ten conditioning factors and 194 flood locations was created using the One-R Attribute Evaluation(ORAE)technique.Various well-known machine learning and optimization algorithms were used as benchmarks to compare the prediction accuracy of the proposed model.Statistical metrics include sensitivity,specificity accuracy,root mean square error(RMSE),and area under the receiver operatic characteristic curve(AUC)were used to assess the validity of the proposed model.The result shows that the proposed model has the highest goodness-of-fit(AUC=0.989)and prediction accuracy(AUC=0.985),and based on the validation dataset it outperforms benchmark models including LR(0.885),LMT(0.934),BLR(0.936),ADT(0.976),NBT(0.974),REPTree(0.811),ANFIS-BAT(0.944),ANFIS-CA(0.921),ANFIS-IWO(0.939),ANFIS-ICA(0.947),and ANFIS-FA(0.917).We conclude that the DBPGA model is an excellent alternative tool for predicting flash flood susceptibility for other regions prone to flash floods. 展开更多
关键词 Environmental modeling Flash flood deep belief network OVER-FITTING Iran
下载PDF
Tunnelling performance prediction of cantilever boring machine in sedimentary hard-rock tunnel using deep belief network 被引量:2
4
作者 SONG Zhan-ping CHENG Yun +1 位作者 ZHANG Ze-kun YANG Teng-tian 《Journal of Mountain Science》 SCIE CSCD 2023年第7期2029-2040,共12页
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in... Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel. 展开更多
关键词 Urban metro tunnel Cantilever boring machine Hard rock tunnel Performance prediction model Linear regression deep belief network
下载PDF
Deep belief network-based drug identification using near infrared spectroscopy 被引量:2
5
作者 Huihua Yang Baichao Hu +5 位作者 Xipeng Pan Shengke Yan Yanchun Feng Xuebo Zhang Lihui Yin Changqin Hu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第2期1-10,共10页
Near infrared spectroscopy(NIRS)analysis technology,combined with chemometrics,can be effectively used in quick and nondestructive analysis of quality and category.In this paper,an effective drug identification method... Near infrared spectroscopy(NIRS)analysis technology,combined with chemometrics,can be effectively used in quick and nondestructive analysis of quality and category.In this paper,an effective drug identification method by using deep belief network(DBN)with dropout mecha-nism(dropout-DBN)to model NIRS is introduced,in which dropout is employed to overcome the overfitting problem coming from the small sample.This paper tests proposed method under datasets of different sizes with the example of near infrared diffuse refectance spectroscopy of erythromycin ethylsuccinate drugs and other drugs,aluminum and nonaluminum packaged.Meanwhile,it gives experiments to compare the proposed method's performance with back propagation(BP)neural network,support vector machines(SVMs)and sparse denoising auto-encoder(SDAE).The results show that for both binary classification and multi-classification,dropout mechanism can improve the classification accuracy,and dropout-DBN can achieve best classification accuracy in almost all cases.SDAE is similar to dropout-DBN in the aspects of classification accuracy and algorithm stability,which are higher than that of BP neural network and SVM methods.In terms of training time,dropout-DBN model is superior to SDAE model,but inferior to BP neural network and SVM methods.Therefore,dropout-DBN can be used as a modeling tool with effective binary and multi-class classification performance on a spectrum sample set of small size. 展开更多
关键词 deep belief networks near infrared spectroscopy drug classification DROPOUT
下载PDF
Damage identification of steel truss bridges based on deep belief network 被引量:2
6
作者 Tu Yongming Lu Senlu Wang Chao 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期392-400,共9页
To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establis... To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establish the nonlinear mapping relationship between the mode shape and structural damage.The hidden layer of the DBN is trained through a layer-by-layer pre-training.Finally,the backpropagation algorithm is used to fine-tune the entire network.The method is validated using a numerical model of a steel truss bridge.The results show that under the influence of noise and modeling uncertainty,the damage identification method based on the DBN can identify the accurate damage location and degree identification compared with the traditional damage identification method based on an artificial neural network. 展开更多
关键词 deep learning restricted Boltzmann machine deep belief network structural damage identification
下载PDF
Novel DDoS Feature Representation Model Combining Deep Belief Network and Canonical Correlation Analysis 被引量:2
7
作者 Chen Zhang Jieren Cheng +3 位作者 Xiangyan Tang Victor SSheng Zhe Dong Junqi Li 《Computers, Materials & Continua》 SCIE EI 2019年第8期657-675,共19页
Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Mos... Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Most DDoS feature extraction methods cannot fully utilize the information of the original data,resulting in the extracted features losing useful features.In this paper,a DDoS feature representation method based on deep belief network(DBN)is proposed.We quantify the original data by the size of the network flows,the distribution of IP addresses and ports,and the diversity of packet sizes of different protocols and train the DBN in an unsupervised manner by these quantified values.Two feedforward neural networks(FFNN)are initialized by the trained deep belief network,and one of the feedforward neural networks continues to be trained in a supervised manner.The canonical correlation analysis(CCA)method is used to fuse the features extracted by two feedforward neural networks per layer.Experiments show that compared with other methods,the proposed method can extract better features. 展开更多
关键词 deep belief network DDoS feature representation canonical correlation analysis
下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
8
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(DBN)
下载PDF
Deep Belief Network for Lung Nodule Segmentation and Cancer Detection
9
作者 Sindhuja Manickavasagam Poonkuzhali Sugumaran 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期135-151,共17页
Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division ... Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness. 展开更多
关键词 Chicken-sine cosine algorithm deep belief network lung cancer Subject classification codes artificial intelligence machine learning segmentation
下载PDF
An Efficient Video Inpainting Approach Using Deep Belief Network
10
作者 M.Nuthal Srinivasan M.Chinnadurai 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期515-529,共15页
The video inpainting process helps in several video editing and restoration processes like unwanted object removal,scratch or damage rebuilding,and retargeting.It intends to fill spatio-temporal holes with reasonable ... The video inpainting process helps in several video editing and restoration processes like unwanted object removal,scratch or damage rebuilding,and retargeting.It intends to fill spatio-temporal holes with reasonable content in the video.Inspite of the recent advancements of deep learning for image inpainting,it is challenging to outspread the techniques into the videos owing to the extra time dimensions.In this view,this paper presents an efficient video inpainting approach using beetle antenna search with deep belief network(VIA-BASDBN).The proposed VIA-BASDBN technique initially converts the videos into a set of frames and they are again split into a region of 5*5 blocks.In addition,the VIABASDBN technique involves the design of optimal DBN model,which receives input features from Local Binary Patterns(LBP)to categorize the blocks into smooth or structured regions.Furthermore,the weight vectors of the DBN model are optimally chosen by the use of BAS technique.Finally,the inpainting of the smooth and structured regions takes place using the mean and patch matching approaches respectively.The patch matching process depends upon the minimal Euclidean distance among the extracted SIFT features of the actual and references patches.In order to examine the effective outcome of the VIA-BASDBN technique,a series of simulations take place and the results denoted the promising performance. 展开更多
关键词 Video inpainting deep learning video restoration beetle antenna search deep belief network patch matching feature extraction
下载PDF
Virtual Nursing Using Deep Belief Networks for Elderly People (DBN-EP)
11
作者 S.Rajasekaran G.Kousalya 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期985-1000,共16页
The demand for better health services has resulted in the advancementof remote monitoring health, i.e., virtual nursing systems, to watch and supportthe elderly with innovative concepts such as being patient-centric, ... The demand for better health services has resulted in the advancementof remote monitoring health, i.e., virtual nursing systems, to watch and supportthe elderly with innovative concepts such as being patient-centric, easier to use,and having smarter interactions and more accurate conclusions. While virtual nursing services attempt to provide consumers and medical practitioners with continuous medical and health monitoring services, access to allied healthcare expertssuch as nurses remains a challenge. In this research, we present Virtual NursingUsing Deep Belief Networks for Elderly People (DBN-EP), a new framework thatprovides a virtual nurse agent deployed on a senior citizen’s home, workplace, orcare centre to help manage their health condition on a continuous basis. Using thismethod, healthcare providers can assign various jobs to nurses by utilizing a general task definition mechanism, in which a task is defined as a combination ofmedical workflow, operational guidelines, and data gathered from a remotelymonitored virtual nursing system. Practitioners are in charge of DBN-EP andmake treatment decisions for patients. This allows a DBN-EP to act as a personalized full-time nurse for a client by carrying out practitioner support activitiesbased on information gathered about the client’s health. An electronic PersonalHealth Record (ePHR) system, such as a specialized web portal and mobile apps,could provide such patient information to elderly person family members and carecentres. We created a prototype system using a DBN-EP system that allows traditional client applications and healthcare provider systems to collaborate. Finally,we demonstrate how this system may benefit the elderly through a result anddebate. 展开更多
关键词 deep belief networks RBM video mining elder people elder care
下载PDF
PSO-DBNet for Peak-to-Average Power Ratio Reduction Using Deep Belief Network
12
作者 A.Jameer Basha M.Ramya Devi +3 位作者 S.Lokesh P.Sivaranjani D.Mansoor Hussain Venkat Padhy 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1483-1493,共11页
Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at... Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at various frequency bands.A recent wireless communication network uses OFDM in longterm evolution(LTE)and 5G,among others.The main problem faced by 5G wireless OFDM is distortion of transmission signals in the network.This transmission loss is called peak-to-average power ratio(PAPR).This wireless signal distortion can be reduced using various techniques.This study uses machine learning-based algorithm to solve the problem of PAPR in 5G wireless communication.Partial transmit sequence(PTS)helps in the fast transfer of data in wireless LTE.PTS is merged with deep belief neural network(DBNet)for the efficient processing of signals in wireless 5G networks.Result indicates that the proposed system outperforms other existing techniques.Therefore,PAPR reduction in OFDM by DBNet is optimized with the help of an evolutionary algorithm called particle swarm optimization.Hence,the specified design supports in improving the proposed PAPR reduction architecture. 展开更多
关键词 5G wireless network orthogonal frequency division multiplexing signal distortion peak to average power ratio partial transmit sequence deep belief network
下载PDF
Spectrometry analysis based on approximation coefficients and deep belief networks
13
作者 Jian-Ping He Xiao-Bin Tang +4 位作者 Pin Gong Peng Wang Zhen-Yang Han Wen Yan Le Gao 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第5期65-74,共10页
A method of spectrometry analysis based on approximation coefficients and deep belief networks was developed. Detection rate and accurate radionuclide identification distance were used to evaluate the performance of t... A method of spectrometry analysis based on approximation coefficients and deep belief networks was developed. Detection rate and accurate radionuclide identification distance were used to evaluate the performance of the proposed method in identifying radionuclides. Experimental results show that identification performance was not affected by detection time, number of radionuclides, or detection distance when the minimum detectable activity of a single radionuclide was satisfied. Moreover, the proposed method could accurately predict isotopic compositions from the spectra of moving radionuclides. Thus, the designed method can be used for radiation monitoring instruments that identify radionuclides. 展开更多
关键词 APPROXIMATION coefficient deep belief network SPECTROMETRY ANALYSIS RADIONUCLIDE identification Detection rate
下载PDF
Finite-sensor fault-diagnosis simulation study of gas turbine engine using information entropy and deep belief networks 被引量:6
14
作者 De-long FENG Ming-qing XIAO +3 位作者 Ying-xi LIU Hai-fang SONG Zhao YANG Ze-wen HU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第12期1287-1304,共18页
Precise fault diagnosis is an important part of prognostics and health management. It can avoid accidents, extend the service life of the machine, and also reduce maintenance costs. For gas turbine engine fault diagno... Precise fault diagnosis is an important part of prognostics and health management. It can avoid accidents, extend the service life of the machine, and also reduce maintenance costs. For gas turbine engine fault diagnosis, we cannot install too many sensors in the engine because the operating environment of the engine is harsh and the sensors will not work in high temperature, at high rotation speed, or under high pressure. Thus, there is not enough sensory data from the working engine to diagnose potential failures using existing approaches. In this paper, we consider the problem of engine fault diagnosis using finite sensory data under complicated circumstances, and propose deep belief networks based on information entropy, IE-DBNs, for engine fault diagnosis. We first introduce several information entropies and propose joint complexity entropy based on single signal entropy. Second, the deep belief networks (DBNs) is analyzed and a logistic regression layer is added to the output of the DBNs. Then, information entropy is used in fault diagnosis and as the input for the DBNs. Comparison between the proposed IE-DBNs method and state-of-the-art machine learning approaches shows that the IE-DBNs method achieves higher accuracy. 展开更多
关键词 deep belief networks (DBNs) Fault diagnosis Information entropy ENGINE
原文传递
Research on Voiceprint Recognition of Camouflage Voice Based on Deep Belief Network 被引量:4
15
作者 Nan Jiang Ting Liu 《International Journal of Automation and computing》 EI CSCD 2021年第6期947-962,共16页
The problem of disguised voice recognition based on deep belief networks is studied. A hybrid feature extraction algorithm based on formants, Gammatone frequency cepstrum coefficients(GFCC) and their different coeffic... The problem of disguised voice recognition based on deep belief networks is studied. A hybrid feature extraction algorithm based on formants, Gammatone frequency cepstrum coefficients(GFCC) and their different coefficients is proposed to extract more discriminative speaker features from the original voice data. Using mixed features as the input of the model, a masquerade voice library is constructed. A masquerade voice recognition model based on a depth belief network is proposed. A dropout strategy is introduced to prevent overfitting, which effectively solves the problems of traditional Gaussian mixture models, such as insufficient modeling ability and low discrimination. Experimental results show that the proposed disguised voice recognition method can better fit the feature distribution, and significantly improve the classification effect and recognition rate. 展开更多
关键词 Disguised voice recognition deep belief network feature extraction Gammatone frequency cepstrum coefficients(GFCC) DROPOUT
原文传递
An End-to-end Transient Recognition Method for VSC-HVDC Based on Deep Belief Network 被引量:3
16
作者 Guomin Luo Jiaxin Hei +2 位作者 Changyuan Yao Jinghan He Meng Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第6期1070-1079,共10页
Lightning is one of the most common transient interferences on overhead transmission lines of high-voltage direct current(HVDC)systems.Accurate and effective recognition of faults and disturbances caused by lightning ... Lightning is one of the most common transient interferences on overhead transmission lines of high-voltage direct current(HVDC)systems.Accurate and effective recognition of faults and disturbances caused by lightning strokes is crucial in transient protections such as traveling wave protection.Traditional recognition methods which adopt feature extraction and classification models rely heavily on the performance of signal processing and practical operation experiences.Misjudgments occur due to the poor generalization performance of recognition models.To improve the recognition rates and reliability of transient protection,this paper proposes a transient recognition method based on the deep belief network.The normalized line-mode components of transient currents on HVDC transmission lines are analyzed by a deep belief network which is properly designed.The feature learning process of the deep belief network can discover the inherent characteristics and improve recognition accuracy.Simulations are carried out to verify the effectiveness of the proposed method.Results demonstrate that the proposed method performs well in various scenarios and shows higher potential in practical applications than traditional machine learning based ones. 展开更多
关键词 deep belief network transient recognition machine learning voltage source converter based high-voltage direct current(VSC-HVDC)
原文传递
Tandem hidden Markov models using deep belief networks for offline handwriting recognition 被引量:2
17
作者 Partha Pratim ROY Guoqiang ZHONG Mohamed CHERIET 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第7期978-988,共11页
Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document im... Unconstrained offiine handwriting recognition is a challenging task in the areas of document analysis and pattern recognition. In recent years, to sufficiently exploit the supervisory information hidden in document images, much effort has been made to integrate multi-layer perceptrons (MLPs) in either a hybrid or a tandem fashion into hidden Markov models (HMMs). However, due to the weak learnability of MLPs, the learnt features are not necessarily optimal for subsequent recognition tasks. In this paper, we propose a deep architecture-based tandem approach for unconstrained offiine handwriting recognition. In the proposed model, deep belief networks arc adopted to learn the compact representations of sequential data, while HMMs are applied for (sub-)word recognition. We evaluate the proposed model on two publicly available datasets, i.e., RIMES and IFN/ENIT, which are based on Latin and Arabic languages respectively, and one dataset collected by ourselves called Devanagari (all Indian script). Extensive experiments show the advantage of the proposed model, especially over the MLP-HMMs taudem approaches. 展开更多
关键词 Handwriting recognition Hidden Markov models deep learning deep belief networks Tandemapproach
原文传递
Extracting Soil Moisture from Fengyun-3D Medium Resolution Spectral Imager-Ⅱ Imagery by Using a Deep Belief Network 被引量:2
18
作者 Wenwen WANG Chengming ZHANG +3 位作者 Feng LI Jiaojie SONG Peiqi LI Yuhua ZHANG 《Journal of Meteorological Research》 SCIE CSCD 2020年第4期748-759,共12页
Obtaining continuous and high-quality soil moisture(SM) data is important in scientific research and applications,especially for agriculture, meteorology, and environmental monitoring. With the continuously increasing... Obtaining continuous and high-quality soil moisture(SM) data is important in scientific research and applications,especially for agriculture, meteorology, and environmental monitoring. With the continuously increasing number of artificial satellites in China, the acquisition of SM data from remote sensing images has received increasing attention.In this study, we constructed an SM inversion model by using a deep belief network(DBN) to extract SM data from Fengyun-3 D(FY-3 D) Medium Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ) imagery;we named this model SM-DBN.The SM-DBN consists of two subnetworks: one for temperature and the other for SM. In the temperature subnetwork, bands 1, 2, 3, 4, 24, and 25 of the FY-3 D MERSI-Ⅱ imagery, which are relevant to temperature, were used as inputs while land surface temperatures(LST) obtained from ground stations were used as the expected output value when training the model. In the SM subnetwork, the input data included LSTs generated from the temperature subnetwork, normalized difference vegetation index(NDVI), and enhanced vegetation index(EVI);and the SM data obtained from ground stations were used as the expected outputs. We selected the Ningxia Hui Autonomous Region of China as the study area and used selected MERSI-Ⅱ images and in-situ observation station data from 2018 to 2019 to develop our dataset. The results of the SM-DBN were validated by using in-situ SM data as a reference, and its performance was also compared with those of the linear regression(LR) and back propagation(BP) neural network models. The overall accuracy of these models was measured by using the root mean square error(RMSE) of the differences between the model results and in-situ SM observation data. The RMSE of the LR, BP neural network, and SM-DBN models were 0.101, 0.083, and 0.032, respectively. These results suggest that the SM-DBN model significantly outperformed the other two models. 展开更多
关键词 deep learning deep belief network(DBN) Fengyun-3D(FY-3D) Medium Resolution Spectral Imager-Ⅱ(MERSI-Ⅱ)Imagery data fitting soil moisture(SM) Ningxia
原文传递
Fault Diagnosis of Photovoltaic Array Based on Deep Belief Network Optimized by Genetic Algorithm 被引量:2
19
作者 Caixia Tao Xu Wang +1 位作者 Fengyang Gao Min Wang 《Chinese Journal of Electrical Engineering》 CSCD 2020年第3期106-114,共9页
When using deep belief networks(DBN)to establish a fault diagnosis model,the objective function easily falls into a local optimum during the learning and training process due to random initialization of the DBN networ... When using deep belief networks(DBN)to establish a fault diagnosis model,the objective function easily falls into a local optimum during the learning and training process due to random initialization of the DBN network bias and weights,thereby affecting the computational efficiency.To address the problem,a fault diagnosis method based on a deep belief network optimized by genetic algorithm(GA-DBN)is proposed.The method uses the restricted Boltzmann machine reconstruction error to structure the fitness function,and uses the genetic algorithm to optimize the network bias and weight,thus improving the network accuracy and convergence speed.In the experiment,the performance of the model is analyzed from the aspects of reconstruction error,classification accuracy,and time-consuming size.The results are compared with those of back propagation optimized by the genetic algorithm,support vector machines,and DBN.It shows that the proposed method improves the generalization ability of traditional DBN,and has higher recognition accuracy of photovoltaic array faults. 展开更多
关键词 deep belief network(DBN) fault diagnosis genetic algorithm PV array recognition accuracy
原文传递
FG-SMOTE:Fuzzy-based Gaussian synthetic minority oversampling with deep belief networks classifier for skewed class distribution 被引量:1
20
作者 Putta Hemalatha Geetha Mary Amalanathan 《International Journal of Intelligent Computing and Cybernetics》 EI 2021年第2期269-286,共18页
Purpose-Adequate resources for learning and training the data are an important constraint to develop an efficient classifier with outstanding performance.The data usually follows a biased distribution of classes that ... Purpose-Adequate resources for learning and training the data are an important constraint to develop an efficient classifier with outstanding performance.The data usually follows a biased distribution of classes that reflects an unequal distribution of classes within a dataset.This issue is known as the imbalance problem,which is one of the most common issues occurring in real-time applications.Learning of imbalanced datasets is a ubiquitous challenge in the field of data mining.Imbalanced data degrades the performance of the classifier by producing inaccurate results.Design/methodology/approach-In the proposed work,a novel fuzzy-based Gaussian synthetic minority oversampling(FG-SMOTE)algorithm is proposed to process the imbalanced data.The mechanism of the Gaussian SMOTE technique is based on finding the nearest neighbour concept to balance the ratio between minority and majority class datasets.The ratio of the datasets belonging to the minority and majority class is balanced using a fuzzy-based Levenshtein distance measure technique.Findings-The performance and the accuracy of the proposed algorithm is evaluated using the deep belief networks classifier and the results showed the efficiency of the fuzzy-based Gaussian SMOTE technique achieved an AUC:93.7%.F1 Score Prediction:94.2%,Geometric Mean Score:93.6%predicted from confusion matrix.Research limitations/implications-The proposed research still retains some of the challenges that need to be focused such as application FG-SMOTE to multiclass imbalanced dataset and to evaluate dataset imbalance problem in a distributed environment.Originality/value-The proposed algorithm fundamentally solves the data imbalance issues and challenges involved in handling the imbalanced data.FG-SMOTE has aided in balancing minority and majority class datasets. 展开更多
关键词 Imbalanced data Gaussian SMOTE Levenshtein distance measure technique Skewed class distribution Fuzzy based Gaussian SMOTE deep learning deep belief network classifie
原文传递
上一页 1 2 57 下一页 到第
使用帮助 返回顶部