期刊文献+
共找到1,154篇文章
< 1 2 58 >
每页显示 20 50 100
Virtual Nursing Using Deep Belief Networks for Elderly People (DBN-EP)
1
作者 S.Rajasekaran G.Kousalya 《Computer Systems Science & Engineering》 SCIE EI 2022年第9期985-1000,共16页
The demand for better health services has resulted in the advancementof remote monitoring health, i.e., virtual nursing systems, to watch and supportthe elderly with innovative concepts such as being patient-centric, ... The demand for better health services has resulted in the advancementof remote monitoring health, i.e., virtual nursing systems, to watch and supportthe elderly with innovative concepts such as being patient-centric, easier to use,and having smarter interactions and more accurate conclusions. While virtual nursing services attempt to provide consumers and medical practitioners with continuous medical and health monitoring services, access to allied healthcare expertssuch as nurses remains a challenge. In this research, we present Virtual NursingUsing Deep Belief Networks for Elderly People (DBN-EP), a new framework thatprovides a virtual nurse agent deployed on a senior citizen’s home, workplace, orcare centre to help manage their health condition on a continuous basis. Using thismethod, healthcare providers can assign various jobs to nurses by utilizing a general task definition mechanism, in which a task is defined as a combination ofmedical workflow, operational guidelines, and data gathered from a remotelymonitored virtual nursing system. Practitioners are in charge of DBN-EP andmake treatment decisions for patients. This allows a DBN-EP to act as a personalized full-time nurse for a client by carrying out practitioner support activitiesbased on information gathered about the client’s health. An electronic PersonalHealth Record (ePHR) system, such as a specialized web portal and mobile apps,could provide such patient information to elderly person family members and carecentres. We created a prototype system using a DBN-EP system that allows traditional client applications and healthcare provider systems to collaborate. Finally,we demonstrate how this system may benefit the elderly through a result anddebate. 展开更多
关键词 deep belief networks RBM video mining elder people elder care
下载PDF
Voice activity detection based on deep belief networks using likelihood ratio 被引量:3
2
作者 KIM Sang-Kyun PARK Young-Jin LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第1期145-149,共5页
A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spect... A novel technique is proposed to improve the performance of voice activity detection(VAD) by using deep belief networks(DBN) with a likelihood ratio(LR). The likelihood ratio is derived from the speech and noise spectral components that are assumed to follow the Gaussian probability density function(PDF). The proposed algorithm employs DBN learning in order to classify voice activity by using the input signal to calculate the likelihood ratio. Experiments show that the proposed algorithm yields improved results in various noise environments, compared to the conventional VAD algorithms. Furthermore, the DBN based algorithm decreases the detection probability of error with [0.7, 2.6] compared to the support vector machine based algorithm. 展开更多
关键词 voice activity detection likelihood ratio deep belief networks
下载PDF
Multi-channel electromyography pattern classification using deep belief networks for enhanced user experience 被引量:1
3
作者 SHIM Hyeon-min LEE Sangmin 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1801-1808,共8页
An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-v... An enhanced algorithm is proposed to recognize multi-channel electromyography(EMG) patterns using deep belief networks(DBNs). It is difficult to classify the EMG features because an EMG signal has nonlinear and time-varying characteristics.Therefore, in several previous studies, various machine-learning methods have been applied. A DBN is a fast, greedy learning algorithm that can find a fairly good set of weights rapidly, even in deep networks with a large number of parameters and many hidden layers. To evaluate this model, we acquired EMG signals, extracted their features, and then compared the model with the DBN and other conventional classifiers. The accuracy of the DBN is higher than that of the other algorithms. The classification performance of the DBN model designed is approximately 88.60%. It is 7.55%(p=9.82×10-12) higher than linear discriminant analysis(LDA) and 2.89%(p=1.94×10-5) higher than support vector machine(SVM). Further, the DBN is better than shallow learning algorithms or back propagation(BP), and this model is effective for an EMG-based user-interfaced system. 展开更多
关键词 electromyography(EMG) pattern classification feature extraction deep learning deep belief network(dbn)
下载PDF
Spectrometry analysis based on approximation coefficients and deep belief networks
4
作者 Jian-Ping He Xiao-Bin Tang +4 位作者 Pin Gong Peng Wang Zhen-Yang Han Wen Yan Le Gao 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第5期65-74,共10页
A method of spectrometry analysis based on approximation coefficients and deep belief networks was developed. Detection rate and accurate radionuclide identification distance were used to evaluate the performance of t... A method of spectrometry analysis based on approximation coefficients and deep belief networks was developed. Detection rate and accurate radionuclide identification distance were used to evaluate the performance of the proposed method in identifying radionuclides. Experimental results show that identification performance was not affected by detection time, number of radionuclides, or detection distance when the minimum detectable activity of a single radionuclide was satisfied. Moreover, the proposed method could accurately predict isotopic compositions from the spectra of moving radionuclides. Thus, the designed method can be used for radiation monitoring instruments that identify radionuclides. 展开更多
关键词 APPROXIMATION coefficient deep belief network SPECTROMETRY ANALYSIS RADIONUCLIDE identification Detection rate
下载PDF
PSO-DBNet for Peak-to-Average Power Ratio Reduction Using Deep Belief Network
5
作者 A.Jameer Basha M.Ramya Devi +3 位作者 S.Lokesh P.Sivaranjani D.Mansoor Hussain Venkat Padhy 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1483-1493,共11页
Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at... Data transmission through a wireless network has faced various signal problems in the past decades.The orthogonal frequency division multiplexing(OFDM)technique is widely accepted in multiple data transfer patterns at various frequency bands.A recent wireless communication network uses OFDM in longterm evolution(LTE)and 5G,among others.The main problem faced by 5G wireless OFDM is distortion of transmission signals in the network.This transmission loss is called peak-to-average power ratio(PAPR).This wireless signal distortion can be reduced using various techniques.This study uses machine learning-based algorithm to solve the problem of PAPR in 5G wireless communication.Partial transmit sequence(PTS)helps in the fast transfer of data in wireless LTE.PTS is merged with deep belief neural network(DBNet)for the efficient processing of signals in wireless 5G networks.Result indicates that the proposed system outperforms other existing techniques.Therefore,PAPR reduction in OFDM by DBNet is optimized with the help of an evolutionary algorithm called particle swarm optimization.Hence,the specified design supports in improving the proposed PAPR reduction architecture. 展开更多
关键词 5G wireless network orthogonal frequency division multiplexing signal distortion peak to average power ratio partial transmit sequence deep belief network
下载PDF
Nonlinear inversion for magnetotelluric sounding based on deep belief network 被引量:10
6
作者 WANG He LIU Wei XI Zhen-zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2482-2494,共13页
To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network ... To improve magnetotelluric(MT)nonlinear inversion accuracy and stability,this work introduces the deep belief network(DBN)algorithm.Firstly,a network frame is set up for training in different 2D MT models.The network inputs are the apparent resistivities of known models,and the outputs are the model parameters.The optimal network structure is achieved by determining the numbers of hidden layers and network nodes.Secondly,the learning process of the DBN is implemented to obtain the optimal solution of network connection weights for known geoelectric models.Finally,the trained DBN is verified through inversion tests,in which the network inputs are the apparent resistivities of unknown models,and the outputs are the corresponding model parameters.The experiment results show that the DBN can make full use of the global searching capability of the restricted Boltzmann machine(RBM)unsupervised learning and the local optimization of the back propagation(BP)neural network supervised learning.Comparing to the traditional neural network inversion,the calculation accuracy and stability of the DBN for MT data inversion are improved significantly.And the tests on synthetic data reveal that this method can be applied to MT data inversion and achieve good results compared with the least-square regularization inversion. 展开更多
关键词 MAGNETOTELLURICS nonlinear inversion deep learning deep belief network
下载PDF
A Real-Time and Ubiquitous Network Attack Detection Based on Deep Belief Network and Support Vector Machine 被引量:8
7
作者 Hao Zhang Yongdan Li +2 位作者 Zhihan Lv Arun Kumar Sangaiah Tao Huang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期790-799,共10页
In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network... In recent years, network traffic data have become larger and more complex, leading to higher possibilities of network intrusion. Traditional intrusion detection methods face difficulty in processing high-speed network data and cannot detect currently unknown attacks. Therefore, this paper proposes a network attack detection method combining a flow calculation and deep learning. The method consists of two parts: a real-time detection algorithm based on flow calculations and frequent patterns and a classification algorithm based on the deep belief network and support vector machine(DBN-SVM). Sliding window(SW) stream data processing enables real-time detection, and the DBN-SVM algorithm can improve classification accuracy. Finally, to verify the proposed method, a system is implemented.Based on the CICIDS2017 open source data set, a series of comparative experiments are conducted. The method's real-time detection efficiency is higher than that of traditional machine learning algorithms. The attack classification accuracy is 0.7 percentage points higher than that of a DBN, which is 2 percentage points higher than that of the integrated algorithm boosting and bagging methods. Hence, it is suitable for the real-time detection of high-speed network intrusions. 展开更多
关键词 deep belief network(dbn) flow calculation frequent pattern INTRUSION detection SLIDING WINDOW support vector machine(SVM)
下载PDF
Flash flood susceptibility mapping using a novel deep learning model based on deep belief network,back propagation and genetic algorithm 被引量:2
8
作者 Himan Shahabi Ataollah Shirzadi +6 位作者 Somayeh Ronoud Shahrokh Asadi Binh Thai Pham Fatemeh Mansouripour Marten Geertsema John J.Clague Dieu Tien Bui 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期146-168,共23页
Flash floods are responsible for loss of life and considerable property damage in many countries.Flood susceptibility maps contribute to flood risk reduction in areas that are prone to this hazard if appropriately use... Flash floods are responsible for loss of life and considerable property damage in many countries.Flood susceptibility maps contribute to flood risk reduction in areas that are prone to this hazard if appropriately used by landuse planners and emergency managers.The main objective of this study is to prepare an accurate flood susceptibility map for the Haraz watershed in Iran using a novel modeling approach(DBPGA)based on Deep Belief Network(DBN)with Back Propagation(BP)algorithm optimized by the Genetic Algorithm(GA).For this task,a database comprising ten conditioning factors and 194 flood locations was created using the One-R Attribute Evaluation(ORAE)technique.Various well-known machine learning and optimization algorithms were used as benchmarks to compare the prediction accuracy of the proposed model.Statistical metrics include sensitivity,specificity accuracy,root mean square error(RMSE),and area under the receiver operatic characteristic curve(AUC)were used to assess the validity of the proposed model.The result shows that the proposed model has the highest goodness-of-fit(AUC=0.989)and prediction accuracy(AUC=0.985),and based on the validation dataset it outperforms benchmark models including LR(0.885),LMT(0.934),BLR(0.936),ADT(0.976),NBT(0.974),REPTree(0.811),ANFIS-BAT(0.944),ANFIS-CA(0.921),ANFIS-IWO(0.939),ANFIS-ICA(0.947),and ANFIS-FA(0.917).We conclude that the DBPGA model is an excellent alternative tool for predicting flash flood susceptibility for other regions prone to flash floods. 展开更多
关键词 Environmental modeling Flash flood deep belief network OVER-FITTING Iran
下载PDF
Deep belief network-based drug identification using near infrared spectroscopy 被引量:2
9
作者 Huihua Yang Baichao Hu +5 位作者 Xipeng Pan Shengke Yan Yanchun Feng Xuebo Zhang Lihui Yin Changqin Hu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第2期1-10,共10页
Near infrared spectroscopy(NIRS)analysis technology,combined with chemometrics,can be effectively used in quick and nondestructive analysis of quality and category.In this paper,an effective drug identification method... Near infrared spectroscopy(NIRS)analysis technology,combined with chemometrics,can be effectively used in quick and nondestructive analysis of quality and category.In this paper,an effective drug identification method by using deep belief network(DBN)with dropout mecha-nism(dropout-DBN)to model NIRS is introduced,in which dropout is employed to overcome the overfitting problem coming from the small sample.This paper tests proposed method under datasets of different sizes with the example of near infrared diffuse refectance spectroscopy of erythromycin ethylsuccinate drugs and other drugs,aluminum and nonaluminum packaged.Meanwhile,it gives experiments to compare the proposed method's performance with back propagation(BP)neural network,support vector machines(SVMs)and sparse denoising auto-encoder(SDAE).The results show that for both binary classification and multi-classification,dropout mechanism can improve the classification accuracy,and dropout-DBN can achieve best classification accuracy in almost all cases.SDAE is similar to dropout-DBN in the aspects of classification accuracy and algorithm stability,which are higher than that of BP neural network and SVM methods.In terms of training time,dropout-DBN model is superior to SDAE model,but inferior to BP neural network and SVM methods.Therefore,dropout-DBN can be used as a modeling tool with effective binary and multi-class classification performance on a spectrum sample set of small size. 展开更多
关键词 deep belief networks near infrared spectroscopy drug classification DROPOUT
下载PDF
Damage identification of steel truss bridges based on deep belief network 被引量:2
10
作者 Tu Yongming Lu Senlu Wang Chao 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期392-400,共9页
To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establis... To improve the accuracy and anti-noise ability of the structural damage identification method,a bridge damage identification method is proposed based on a deep belief network(DBN).The output vector is used to establish the nonlinear mapping relationship between the mode shape and structural damage.The hidden layer of the DBN is trained through a layer-by-layer pre-training.Finally,the backpropagation algorithm is used to fine-tune the entire network.The method is validated using a numerical model of a steel truss bridge.The results show that under the influence of noise and modeling uncertainty,the damage identification method based on the DBN can identify the accurate damage location and degree identification compared with the traditional damage identification method based on an artificial neural network. 展开更多
关键词 deep learning restricted Boltzmann machine deep belief network structural damage identification
下载PDF
Tunnelling performance prediction of cantilever boring machine in sedimentary hard-rock tunnel using deep belief network 被引量:2
11
作者 SONG Zhan-ping CHENG Yun +1 位作者 ZHANG Ze-kun YANG Teng-tian 《Journal of Mountain Science》 SCIE CSCD 2023年第7期2029-2040,共12页
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in... Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel. 展开更多
关键词 Urban metro tunnel Cantilever boring machine Hard rock tunnel Performance prediction model Linear regression deep belief network
下载PDF
Novel DDoS Feature Representation Model Combining Deep Belief Network and Canonical Correlation Analysis 被引量:2
12
作者 Chen Zhang Jieren Cheng +3 位作者 Xiangyan Tang Victor SSheng Zhe Dong Junqi Li 《Computers, Materials & Continua》 SCIE EI 2019年第8期657-675,共19页
Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Mos... Distributed denial of service(DDoS)attacks launch more and more frequently and are more destructive.Feature representation as an important part of DDoS defense technology directly affects the efficiency of defense.Most DDoS feature extraction methods cannot fully utilize the information of the original data,resulting in the extracted features losing useful features.In this paper,a DDoS feature representation method based on deep belief network(DBN)is proposed.We quantify the original data by the size of the network flows,the distribution of IP addresses and ports,and the diversity of packet sizes of different protocols and train the DBN in an unsupervised manner by these quantified values.Two feedforward neural networks(FFNN)are initialized by the trained deep belief network,and one of the feedforward neural networks continues to be trained in a supervised manner.The canonical correlation analysis(CCA)method is used to fuse the features extracted by two feedforward neural networks per layer.Experiments show that compared with other methods,the proposed method can extract better features. 展开更多
关键词 deep belief network DDoS feature representation canonical correlation analysis
下载PDF
Insider Attack Detection Using Deep Belief Neural Network in Cloud Computing
13
作者 A.S.Anakath R.Kannadasan +2 位作者 Niju P.Joseph P.Boominathan G.R.Sreekanth 《Computer Systems Science & Engineering》 SCIE EI 2022年第5期479-492,共14页
Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase ... Cloud computing is a high network infrastructure where users,owners,third users,authorized users,and customers can access and store their information quickly.The use of cloud computing has realized the rapid increase of information in every field and the need for a centralized location for processing efficiently.This cloud is nowadays highly affected by internal threats of the user.Sensitive applications such as banking,hospital,and business are more likely affected by real user threats.An intruder is presented as a user and set as a member of the network.After becoming an insider in the network,they will try to attack or steal sensitive data during information sharing or conversation.The major issue in today's technological development is identifying the insider threat in the cloud network.When data are lost,compromising cloud users is difficult.Privacy and security are not ensured,and then,the usage of the cloud is not trusted.Several solutions are available for the external security of the cloud network.However,insider or internal threats need to be addressed.In this research work,we focus on a solution for identifying an insider attack using the artificial intelligence technique.An insider attack is possible by using nodes of weak users’systems.They will log in using a weak user id,connect to a network,and pretend to be a trusted node.Then,they can easily attack and hack information as an insider,and identifying them is very difficult.These types of attacks need intelligent solutions.A machine learning approach is widely used for security issues.To date,the existing lags can classify the attackers accurately.This information hijacking process is very absurd,which motivates young researchers to provide a solution for internal threats.In our proposed work,we track the attackers using a user interaction behavior pattern and deep learning technique.The usage of mouse movements and clicks and keystrokes of the real user is stored in a database.The deep belief neural network is designed using a restricted Boltzmann machine(RBM)so that the layer of RBM communicates with the previous and subsequent layers.The result is evaluated using a Cooja simulator based on the cloud environment.The accuracy and F-measure are highly improved compared with when using the existing long short-term memory and support vector machine. 展开更多
关键词 Cloud computing security insider attack network security PRIVACY user interaction behavior deep belief neural network
下载PDF
An Efficient Video Inpainting Approach Using Deep Belief Network
14
作者 M.Nuthal Srinivasan M.Chinnadurai 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期515-529,共15页
The video inpainting process helps in several video editing and restoration processes like unwanted object removal,scratch or damage rebuilding,and retargeting.It intends to fill spatio-temporal holes with reasonable ... The video inpainting process helps in several video editing and restoration processes like unwanted object removal,scratch or damage rebuilding,and retargeting.It intends to fill spatio-temporal holes with reasonable content in the video.Inspite of the recent advancements of deep learning for image inpainting,it is challenging to outspread the techniques into the videos owing to the extra time dimensions.In this view,this paper presents an efficient video inpainting approach using beetle antenna search with deep belief network(VIA-BASDBN).The proposed VIA-BASDBN technique initially converts the videos into a set of frames and they are again split into a region of 5*5 blocks.In addition,the VIABASDBN technique involves the design of optimal DBN model,which receives input features from Local Binary Patterns(LBP)to categorize the blocks into smooth or structured regions.Furthermore,the weight vectors of the DBN model are optimally chosen by the use of BAS technique.Finally,the inpainting of the smooth and structured regions takes place using the mean and patch matching approaches respectively.The patch matching process depends upon the minimal Euclidean distance among the extracted SIFT features of the actual and references patches.In order to examine the effective outcome of the VIA-BASDBN technique,a series of simulations take place and the results denoted the promising performance. 展开更多
关键词 Video inpainting deep learning video restoration beetle antenna search deep belief network patch matching feature extraction
下载PDF
Comparison of Urban Growth Modeling Using Deep Belief and Neural Network Based Cellular Automata Model—A Case Study of Chennai Metropolitan Area, Tamil Nadu, India
15
作者 Aishwarya Devendran Aarthi Lakshmanan Gnanappazham 《Journal of Geographic Information System》 2019年第1期1-16,共16页
Urban Growth Models (UGMs) are very essential for a sustainable development of a city as they predict the future urbanization based on the present scenario. Neural Network based Cellular Automata models have proved to... Urban Growth Models (UGMs) are very essential for a sustainable development of a city as they predict the future urbanization based on the present scenario. Neural Network based Cellular Automata models have proved to predict the urban growth more close to reality. Recently, deep learning based techniques are being used for the prediction of urban growth. In this current study, urban growth of Chennai Metropolitan Area (CMA) of 2017 was predicted using Neural Network based Cellular Automata (NN-CA) model and Deep belief based Cellular Automata (DB-CA) model using 2010 and 2013 urban maps. Since the study area experienced congested type of urban growth, “Existing Built-Up” of 2013 alone was used as the agent of urbanization to predict urban growth in 2017. Upon validating, DB-CA model proved to be the better model, as it predicted 524.14 km2 of the study area as urban with higher accuracy (kappa co-efficient: 0.73) when compared to NN-CA model which predicted only 502.42 km2 as urban (kappa co-efficient: 0.71), while the observed urban cover of CMA in 2017 was 572.11 km2. This study also aimed at analyzing the effects of different types of neighbourhood configurations (Rectangular: 3 × 3, 5 × 5, 7 × 7 and Circular: 3 × 3) on the prediction output based on DB-CA model. To understand the direction and type of the urban growth, the study area was divided into five distance based zones with the State Secretariat as the center and entropy values were calculated for the zones. Results reveal that Chennai Corporation and its periphery experience congested urbanization whereas areas away from the Corporation boundary follow dispersed type of urban growth in 2017. 展开更多
关键词 deep belief Neural network Cellular AUTOMATA Urban Prediction Entropy Analysis CHENNAI METROPOLITAN Area
下载PDF
Deep Belief Network for Lung Nodule Segmentation and Cancer Detection
16
作者 Sindhuja Manickavasagam Poonkuzhali Sugumaran 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期135-151,共17页
Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division ... Cancer disease is a deadliest disease cause more dangerous one.By identifying the disease through Artificial intelligence to getting the mage features directly from patients.This paper presents the lung knob division and disease characterization by proposing an enhancement calculation.Most of the machine learning techniques failed to observe the feature dimensions leads inaccuracy in feature selection and classification.This cause inaccuracy in sensitivity and specificity rate to reduce the identification accuracy.To resolve this problem,to propose a Chicken Sine Cosine Algorithm based Deep Belief Network to identify the disease factor.The general technique of the created approach includes four stages,such as pre-processing,segmentation,highlight extraction,and the order.From the outset,the Computerized Tomography(CT)image of the lung is taken care of to the division.When the division is done,the highlights are extricated through morphological factors for feature observation.By getting the features are analysed and the characterization is done dependent on the Deep Belief Network(DBN)which is prepared by utilizing the proposed Chicken-Sine Cosine Algorithm(CSCA)which distinguish the lung tumour,giving two classes in particular,knob or non-knob.The proposed system produce high performance as well compared to the other system.The presentation assessment of lung knob division and malignant growth grouping dependent on CSCA is figured utilizing three measurements to be specificity,precision,affectability,and the explicitness. 展开更多
关键词 Chicken-sine cosine algorithm deep belief network lung cancer Subject classification codes artificial intelligence machine learning segmentation
下载PDF
基于Deep Belief Nets的中文名实体关系抽取 被引量:72
17
作者 陈宇 郑德权 赵铁军 《软件学报》 EI CSCD 北大核心 2012年第10期2572-2585,共14页
关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propa... 关系抽取是信息抽取的一项子任务,用以识别文本中实体之间的语义关系.提出一种利用DBN(deepbelief nets)模型进行基于特征的实体关系抽取方法,该模型是由多层无监督的RBM(restricted Boltzmann machine)网络和一层有监督的BP(back-propagation)网络组成的神经网络分类器.RBM网络以确保特征向量映射达到最优,最后一层BP网络分类RBM网络的输出特征向量,从而训练实体关系分类器.在ACE04语料上进行的相关测试,一方面证明了字特征比词特征更适用于中文关系抽取任务;另一方面设计了3组不同的实验,分别使用正确的实体类别信息、通过实体类型分类器得到实体类型信息和不使用实体类型信息,用以比较实体类型信息对关系抽取效果的影响.实验结果表明,DBN非常适用于基于高维空间特征的信息抽取任务,获得的效果比SVM和反向传播网络更好. 展开更多
关键词 dbn(deep belief nets) 神经网络 关系抽取 深层网络 字特征
下载PDF
基于DBNs的车辆悬架减振器异响鉴别方法 被引量:11
18
作者 黄海波 李人宪 +2 位作者 杨琪 丁渭平 杨明亮 《西南交通大学学报》 EI CSCD 北大核心 2015年第5期776-782,共7页
针对人工经验提取特征进行减振器异响鉴别的复杂性与不可扩展性的问题,分析了深度信念网络(deep belief networks,DBNs)在减振器异响鉴别中的应用,并结合减振器整车与台架试验提出了完整的减振器异响鉴别流程.该方法只需将收集到的减振... 针对人工经验提取特征进行减振器异响鉴别的复杂性与不可扩展性的问题,分析了深度信念网络(deep belief networks,DBNs)在减振器异响鉴别中的应用,并结合减振器整车与台架试验提出了完整的减振器异响鉴别流程.该方法只需将收集到的减振器活塞杆顶端振动加速度信号作为输入,经过DBNs模型逐层特征学习便可进行减振器异响鉴别.同时将鉴别结果与经典的BP神经网络、支持向量机以及传统的3种人工特征提取方法进行对比分析.结果表明:在输入仅为原始信号的条件下,深度信念网络模型对减振器异响鉴别的准确率为96.7%,表明了深度信念网络在减振器异响甄别中的优越性,具有广泛的工程应用前景. 展开更多
关键词 减振器 异响鉴别 深度学习 玻尔兹曼机 深度信念网络
下载PDF
面向入侵检测系统的Deep Belief Nets模型 被引量:23
19
作者 高妮 高岭 贺毅岳 《系统工程与电子技术》 EI CSCD 北大核心 2016年第9期2201-2207,共7页
连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上... 连续的网络流量会导致海量数据问题,这为入侵检测提出了新的挑战。为此,提出一种面向入侵检测系统的深度信念网络(deep belief nets oriented to the intrusion detection system,DBN-IDS)模型。首先,通过无监督的、贪婪的算法自底向上逐层训练每一个受限玻尔兹曼机(restricted Boltzmann machine,RBM)网络,使得大量高维、非线性的无标签数据映射为最优的低维表示;然后利用带标签数据被附加到顶层,通过反向传播(back propagation,BP)算法自顶向下有监督地对RBM网络输出的低维表示进行分类,并同时对RBM网络进行微调;最后,利用NSLKDD数据集对模型参数和性能进行了深入的分析。实验结果表明,DBN-IDS分类效果优于支持向量机(support vector machine,SVM)和神经网络(neural network,NN),适用于高维、非线性的海量入侵数据的分类处理。 展开更多
关键词 入侵检测 神经网络 深度信念网络
下载PDF
基于PCA-GA-DBNs的人脸识别算法研究 被引量:2
20
作者 伍忠东 王飞 《西北师范大学学报(自然科学版)》 CAS 北大核心 2016年第3期43-48,56,共7页
针对人脸图像数据量大和DBNs初始化权值具有指向性以及非凸目标函数易陷入局部最优的问题,提出将主分量分析(PCA)、遗传算法(GA)、深度信念网络(DBNs)相结合的新算法,并将其应用在人脸识别中.首先通过PCA对人脸图像进行处理,以减小人脸... 针对人脸图像数据量大和DBNs初始化权值具有指向性以及非凸目标函数易陷入局部最优的问题,提出将主分量分析(PCA)、遗传算法(GA)、深度信念网络(DBNs)相结合的新算法,并将其应用在人脸识别中.首先通过PCA对人脸图像进行处理,以减小人脸图像的数据量,然后利用GA算法对DBNs进行逐层预训练以优化其网络权值,再利用BP算法对DBNs进行微调并构造分类器.以ORL数据库为实验数据通过与其他经典人脸识别算法的比较得出,该算法不仅可以减少人脸图像数据量,而且可以克服初始权值的指向性和局部最优问题,更重要的是可以提高识别精度和识别速度. 展开更多
关键词 主分量分析法 遗传算法 深度信念网络 人脸识别
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部