<div style="text-align:justify;"> An intracavity frequency doubling acousto-optically Q-switched Neodymium-doped Yttrium Orthvanadate (Nd:YVO<sub>4</sub>) 457 nm blue laser by employing a t...<div style="text-align:justify;"> An intracavity frequency doubling acousto-optically Q-switched Neodymium-doped Yttrium Orthvanadate (Nd:YVO<sub>4</sub>) 457 nm blue laser by employing a three-mirror folded cavity was demonstrated. With the incident pump power of 40.4 W, the maximum average output power of 439 mW 457 nm laser, and the minimum pulse duration of 86.14 ns and the maximum peak power of 510 W were achieved at 10 kHz. The M<sup>2</sup> factors are 1.23 and 1.61 in X and Y directions, respectively. The power stability in two hours is better than 2%. </div>展开更多
Achieving stable deep blue organic light emitting diodes(OLEDs)with narrow full width at half maximum(FWHM)and color gamut in the range of the commission International de L’Eclairage(CIE)ofy≤0.10 is still challengin...Achieving stable deep blue organic light emitting diodes(OLEDs)with narrow full width at half maximum(FWHM)and color gamut in the range of the commission International de L’Eclairage(CIE)ofy≤0.10 is still challenging in display and lighting applications.In this investigation,three donor-acceptor(D-A)deep-blue emitters were designed and synthesized via integrating asymmetric quinazoline(PQ)acceptor with weak donating carbazole(Cz)donor.The effect of the position and number of Cz group in PQunit are investigated,which is also first examples for syste matic research about the effect of different position of asymmetric PQ as acceptor on deep OLEDs.Their bandgaps of 3.12~3.19 eV and the singlet state energy levels of 3.12~3.19 eV were found to be sufficiently large to achieve deep blue light.As expected,these emitters-based OLEDs exhibit deep blue emission with the maximum wavelength≤450 nm and narrow FWHM≈60 nm.Especially,a CIE ofy=0.080 was achieved for 4 PQ-Cz-based OLED.Significantly,the deep blue electroluminescence(EL)spectra of these three emitters-based OLEDs are very stable and the corresponding CIE coordinates deviation(ΔCIE(x,y))can be negligible under the applied voltage ranging from 5 V to 9 V.展开更多
Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent ...Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.展开更多
Phosphorescent and thermally activated delayed fluorescence(TADF)emitters can break through the spin statistics rules and achieve great success in external quantum efficiency(over 5%).However,maintaining high efficien...Phosphorescent and thermally activated delayed fluorescence(TADF)emitters can break through the spin statistics rules and achieve great success in external quantum efficiency(over 5%).However,maintaining high efficiency at high brightness is a tremendous challenge for applications of organic light emitting diodes.Hence,we reported two phenanthroimidazole derivatives PPI-An-CN and PPI-An-TP and achieved extremely low efficiency roll-off with about 99%of the maximum external quantum efficiency(EQEmax)maintained even at a high luminance of 1000 cd/cm2 based non-doped devices.When doping the two materials in CBP(4,4'-bis(N-carbazolyl)-1,1'-biphenyl),the doped devices still exhibited excellent stability at high brightness with CIEy≈0.07 and low turn-on voltage of only 2.8 V.The state-ofthe-art low efficiency roll-off makes the new materials attractive for potential applications.It is the first time that the Fragment Contribution Analysis method has been used to analyze the excited state properties of the molecules in the field of OLEDs,which helps us understand the mechanism more intuitively and deeply.展开更多
Bright tunable light emission in the short wavelength range from sulfur nanodots was demonstrated with a photoluminescence quantum yield(PLQY)of up to 59.4%.A fission-aggregation mechanism was proposed for the formati...Bright tunable light emission in the short wavelength range from sulfur nanodots was demonstrated with a photoluminescence quantum yield(PLQY)of up to 59.4%.A fission-aggregation mechanism was proposed for the formation of sulfur nanodots with desired performances.This synthetic strategy allowed for simultaneous size control from 3.2 to 5.6 nm,thus tuning the emission color from ultraviolet(UV)to deep blue(342±430 nm),and for the suppression of unwanted nonradiative recombination centers and deep level emission.The luminescence mechanism and quantum confinement effect of the synthesized sulfur nanodots were investigated by optical spectroscopy and theoretical calculations.These results show promise toward the application of sulfur nanodots in UV optoelectronics,biomedical treatments,and sterilization.展开更多
Aggregation-induced emission(AIE)has emerged as a new concept,giving highly efficient solid-state photoluminescence.Particularly,AIE luminogens(AIEgens)with deep blue emission(400–450 nm)have displayed salient advant...Aggregation-induced emission(AIE)has emerged as a new concept,giving highly efficient solid-state photoluminescence.Particularly,AIE luminogens(AIEgens)with deep blue emission(400–450 nm)have displayed salient advantages for non-doped organic light-emitting diodes(OLEDs).However,deep blue emitters with Commission Internationale de L’Eclairage(CIE)coordinates less than 0.08 are still rare.In this review,we outline the latest achievements in the molecular guidelines based on the AIE core of tetraphenylbenzene(TPB)for developing efficient deep blue AIEgens.We provide insights into the construction of deep blue emitters with high horizontal orientation by regulating the length of the linear molecule.We also discuss the luminescence mechanisms of these AIEgens-based OLEDs by using the magnetic field effects measurements.Finally,a summary of the challenges and perspectives of deep blue AIEgens for non-doped OLEDs is also presented.展开更多
Hugo Shong explains what it takes to be a successful venture capitalist Hugo Shong, Vice Chairman of IDG Technology Venture Investment (IDGVC), is used to seeing 60-fold and sometimes 120-fold returns on investment.
It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y(y≤0.08)based on triplet-triplet annihilation(TTA). Here, we report facilely available dianthracenylphenylenebased emitter...It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y(y≤0.08)based on triplet-triplet annihilation(TTA). Here, we report facilely available dianthracenylphenylenebased emitters, which have a 3,5-di(4-t-butylphenyl)phenyl moiety at the one end and 4-cyanophenyl or 3-pyridyl at the other end, respectively. Both fluorophores show a high glass transition temperature of over 220℃ with a thermal decomposition temperature of over 430℃ at an initial weight loss of1%. The preliminary characterizations of the organic light-emitting diodes(OLEDs) that utilized these nondoped emitters provided high EQEs of 4.6%à5.9% with CIE coordinates(0.15, 0.07–0.08). The analysis of the EL transient decay revealed that TTA contributed to the observed performance. The results show that the new emitters are attractive as a potential TTA-based host to afford stable deep blue fluorescent OLEDs.展开更多
文摘<div style="text-align:justify;"> An intracavity frequency doubling acousto-optically Q-switched Neodymium-doped Yttrium Orthvanadate (Nd:YVO<sub>4</sub>) 457 nm blue laser by employing a three-mirror folded cavity was demonstrated. With the incident pump power of 40.4 W, the maximum average output power of 439 mW 457 nm laser, and the minimum pulse duration of 86.14 ns and the maximum peak power of 510 W were achieved at 10 kHz. The M<sup>2</sup> factors are 1.23 and 1.61 in X and Y directions, respectively. The power stability in two hours is better than 2%. </div>
基金supports from the National Key Research and Development Plan(No.2016YFB0401004)supports from the Open Fund of Beijing National Laboratory for Molecular Sciences(BNLMS,No.BNLMS20160131)the Fundamental Research Funds for the Central Universities(Harbin Institute of Technology)。
文摘Achieving stable deep blue organic light emitting diodes(OLEDs)with narrow full width at half maximum(FWHM)and color gamut in the range of the commission International de L’Eclairage(CIE)ofy≤0.10 is still challenging in display and lighting applications.In this investigation,three donor-acceptor(D-A)deep-blue emitters were designed and synthesized via integrating asymmetric quinazoline(PQ)acceptor with weak donating carbazole(Cz)donor.The effect of the position and number of Cz group in PQunit are investigated,which is also first examples for syste matic research about the effect of different position of asymmetric PQ as acceptor on deep OLEDs.Their bandgaps of 3.12~3.19 eV and the singlet state energy levels of 3.12~3.19 eV were found to be sufficiently large to achieve deep blue light.As expected,these emitters-based OLEDs exhibit deep blue emission with the maximum wavelength≤450 nm and narrow FWHM≈60 nm.Especially,a CIE ofy=0.080 was achieved for 4 PQ-Cz-based OLED.Significantly,the deep blue electroluminescence(EL)spectra of these three emitters-based OLEDs are very stable and the corresponding CIE coordinates deviation(ΔCIE(x,y))can be negligible under the applied voltage ranging from 5 V to 9 V.
基金supported by the National Natural Science Foundation of China(62004074,51727809)the Science and Technology Department of Hubei Province(2019AAA063,2020BAA016)。
文摘Achieving high-efficiency deep blue emitter with CIE_(y)<0.06(CIE,Commission Internationale de L’Eclairage)and external quantum efficiency(EQE)>10%has been a long-standing challenge for traditional fluorescent materials in organic light-emitting diodes(OLEDs).Here,we report the rational design and synthesis of two new deep blue luminogens:4-(10-(4’-(9 H-carbazol-9-yl)-2,5-dimethyl-[1,1’-biphe nyl]-4-yl)anthracen-9-yl)benzonitrile(2 M-ph-pCzAnBzt)and 4-(10-(4-(9 H-carbazol-9-yl)-2,5-dimethyl phenyl)anthracen-9-yl)benzonitrile(2 M-pCzAnBzt).In particular,2 M-ph-pCzAnBzt produces saturated deep blue emissions in a non-doped electroluminescent device with an exceptionally high EQE of 10.44% and CIE_(x,y)(0.151,0.057).The unprecedented electroluminescent efficiency is attributed to the combined effects of higher-order reversed intersystem crossing and triplet-triplet up-conversion,which are supported by analysis of theoretical calculation,triplet sensitization experiments,as well as nanosecond transient absorption spectroscopy.This research offers a new approach to resolve the shortage of high efficiency deep blue fluorescent emitters.
基金supported by the National Natural Science Foundation of China(No.51673113)the Key Project of DEGP(No.2018KZDXM032)
文摘Phosphorescent and thermally activated delayed fluorescence(TADF)emitters can break through the spin statistics rules and achieve great success in external quantum efficiency(over 5%).However,maintaining high efficiency at high brightness is a tremendous challenge for applications of organic light emitting diodes.Hence,we reported two phenanthroimidazole derivatives PPI-An-CN and PPI-An-TP and achieved extremely low efficiency roll-off with about 99%of the maximum external quantum efficiency(EQEmax)maintained even at a high luminance of 1000 cd/cm2 based non-doped devices.When doping the two materials in CBP(4,4'-bis(N-carbazolyl)-1,1'-biphenyl),the doped devices still exhibited excellent stability at high brightness with CIEy≈0.07 and low turn-on voltage of only 2.8 V.The state-ofthe-art low efficiency roll-off makes the new materials attractive for potential applications.It is the first time that the Fragment Contribution Analysis method has been used to analyze the excited state properties of the molecules in the field of OLEDs,which helps us understand the mechanism more intuitively and deeply.
基金financially supported by A*STAR(AME-IRG-A20E5c0083)the National Natural Science Foundation of China(52006005)。
文摘Bright tunable light emission in the short wavelength range from sulfur nanodots was demonstrated with a photoluminescence quantum yield(PLQY)of up to 59.4%.A fission-aggregation mechanism was proposed for the formation of sulfur nanodots with desired performances.This synthetic strategy allowed for simultaneous size control from 3.2 to 5.6 nm,thus tuning the emission color from ultraviolet(UV)to deep blue(342±430 nm),and for the suppression of unwanted nonradiative recombination centers and deep level emission.The luminescence mechanism and quantum confinement effect of the synthesized sulfur nanodots were investigated by optical spectroscopy and theoretical calculations.These results show promise toward the application of sulfur nanodots in UV optoelectronics,biomedical treatments,and sterilization.
基金This work is supported by the National Natural Science Foundation of China(Nos.21788102,21525417)the Natural Science Foundation of Guangdong Province,China(Nos.2019B030301003,2016A030312002)the Innovation and Technology Commission of Hong Kong,China(No.ITC-CNERC14S01).
文摘Aggregation-induced emission(AIE)has emerged as a new concept,giving highly efficient solid-state photoluminescence.Particularly,AIE luminogens(AIEgens)with deep blue emission(400–450 nm)have displayed salient advantages for non-doped organic light-emitting diodes(OLEDs).However,deep blue emitters with Commission Internationale de L’Eclairage(CIE)coordinates less than 0.08 are still rare.In this review,we outline the latest achievements in the molecular guidelines based on the AIE core of tetraphenylbenzene(TPB)for developing efficient deep blue AIEgens.We provide insights into the construction of deep blue emitters with high horizontal orientation by regulating the length of the linear molecule.We also discuss the luminescence mechanisms of these AIEgens-based OLEDs by using the magnetic field effects measurements.Finally,a summary of the challenges and perspectives of deep blue AIEgens for non-doped OLEDs is also presented.
文摘Hugo Shong explains what it takes to be a successful venture capitalist Hugo Shong, Vice Chairman of IDG Technology Venture Investment (IDGVC), is used to seeing 60-fold and sometimes 120-fold returns on investment.
基金supported by the National Key R&D Program of China(2016YFB0400701)NSFC-Guangdong Joint Program(U1801258 and U1301243)+2 种基金Department of Science and Technology of Guangdong Province(2017A050503002)Foundation of Guangzhou Science and Technology Project(201504010012)the support of Dongguan Major Special Project(2017215117010)
文摘It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y(y≤0.08)based on triplet-triplet annihilation(TTA). Here, we report facilely available dianthracenylphenylenebased emitters, which have a 3,5-di(4-t-butylphenyl)phenyl moiety at the one end and 4-cyanophenyl or 3-pyridyl at the other end, respectively. Both fluorophores show a high glass transition temperature of over 220℃ with a thermal decomposition temperature of over 430℃ at an initial weight loss of1%. The preliminary characterizations of the organic light-emitting diodes(OLEDs) that utilized these nondoped emitters provided high EQEs of 4.6%à5.9% with CIE coordinates(0.15, 0.07–0.08). The analysis of the EL transient decay revealed that TTA contributed to the observed performance. The results show that the new emitters are attractive as a potential TTA-based host to afford stable deep blue fluorescent OLEDs.