期刊文献+
共找到734篇文章
< 1 2 37 >
每页显示 20 50 100
Theory,technology and application of grouted bolting in soft rock roadways of deep coal mines
1
作者 Hongpu Kang Jianwei Yang +4 位作者 Pengfei Jiang Fuqiang Gao Wenzhou Li Jiafeng Li Huiyuan Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1463-1479,共17页
The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous... The grouted bolt,combining rock bolting with grouting techniques,provides an effective solution for controlling the surrounding rock in deep soft rock and fractured roadways.It has been extensively applied in numerous deep mining areas characterized by soft rock roadways,where it has demonstrated remarkable control results.This article systematically explores the evolution of grouted bolting,covering its theoretical foundations,design methods,materials,construction processes,monitoring measures,and methods for assessing its effectiveness.The overview encompassed several key elements,delving into anchoring theory and grouting reinforcement theory.The new principle of high pretensioned high-pressure splitting grouted bolting collaborative active control is introduced.A fresh method for dynamic information design is also highlighted.The discussion touches on both conventional grouting rock bolts and cable bolts,as well as innovative grouted rock bolts and cables characterized by their high pretension,strength,and sealing hole pressure.An examination of the merits and demerits of standard inorganic and organic grouting materials versus the new inorganic–organic composite materials,including their specific application conditions,was conducted.Additionally,the article presents various methods and instruments to assess the support effect of grouting rock bolts,cable bolts,and grouting reinforcement.Furthermore,it provides a foundation for understanding the factors influencing decisions on grouted bolting timing,the sequence of grouting,the pressure applied,the volume of grout used,and the strategic arrangement of grouted rock bolts and cable bolts.The application of the high pretensioned high-pressure splitting grouted bolting collaborative control technology in a typical kilometer-deep soft rock mine in China—the soft coal seam and soft rock roadway in the Kouzidong coal mine,Huainan coal mining area,was introduced.Finally,the existing problems in grouted bolting control technology for deep soft rock roadways are analyzed,and the future development trend of grouted bolting control technology is anticipated. 展开更多
关键词 deep coal mine soft rock roadway grouted bolting rock bolt and cable grouting material high-pressure splitting grouting collaborative control technology
下载PDF
Double-directional control bolt support technology and engineering application at large span Y-type intersections in deep coal mines 被引量:13
2
作者 GUO, Zhibiao SHI, Jianjun +2 位作者 WANG, Jiong CAI, Feng WANG, Fuqiang 《Mining Science and Technology》 EI CAS 2010年第2期254-259,共6页
Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based ... Under deep and complex geological conditions,severe deformation occurs at intersection points of Y-type roadways with large cross sections during engineering projects in coal mines,especially at junction arches.Based on in-situ investigations and theoretical studies,we have summarized typical forms of destruction and identified high stress and unrestricted support at both sides of junction arch as its main causes.In this study,we also presented double-directional control bolt support technology for a large Y-type span intersection,applied to deep intersection engineering in the Jiahe Coal Mine,which has proved effective. 展开更多
关键词 Y-type intersection double-directional control bolt support deep coal mines
下载PDF
Research on space-time coupling action laws of anchor-cable strengthening supporting for rock roadway in deep coal mine 被引量:5
3
作者 CHANG Ju-cai XIE Guang-xiang 《Journal of Coal Science & Engineering(China)》 2012年第2期113-117,共5页
In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose cro... In order to obtain space-time coupling relationship of anchor-cable to improve supporting effect for deep coal mine rock roadway, FLAC3D was used to investigate into mechanical characteristics of the roadway whose crosssection shape was vertical wall and semi-circular arch when the roadway was supported by bolts and metal mesh. The results show that the extent of stress concentrations, the range failure zone, and the deformation at the roof center and two spandrels of roadway are greater than those at other positions, except at the floor. The reasonable positions of anchor-cable supporting are the roof center and two spandrels of roadway. The anchor-cable should be installed at good time with bolts supporting after roadway driving be- cause it can improve the stress states of deep surrounding rock around the roadway and control the roadway deformation effec- tively. The engineering practice has proven that the sustained deformation of deep surrounding rocks is effectively controlled when the anchor-cable supporting is adopted at reasonable positions of the roadway at good time. 展开更多
关键词 space-time coupling relationship anchor-cable supporting deep coal mine rock roadway
下载PDF
Mechanical behaviors of coal measures and ground control technologies for China's deep coal mines-A review 被引量:11
4
作者 Hongpu Kang Fuqiang Gao +1 位作者 Gang Xu Huaiwei Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期37-65,共29页
This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects... This paper reviews the major achievements in terms of mechanical behaviors of coal measures,mining stress distribution characteristics and ground control in China’s deep underground coal mining.The three main aspects of this review are coal measure mechanics,mining disturbance mechanics,and rock support mechanics.Previous studies related to these three topics are reviewed,including the geo-mechanical properties of coal measures,distribution and evolution characteristics of mining-induced stresses,evolution characteristics of mining-induced structures,and principles and technologies of ground control in both deep roadways and longwall faces.A discussion is made to explain the structural and mechanical properties of coal measures in China’s deep coal mining practices,the types and dis-tribution characteristics of in situ stresses in underground coal mines,and the distribution of mining-induced stress that forms under different geological and engineering conditions.The theory of pre-tensioned rock bolting has been proved to be suitable for ground control of deep underground coal roadways.The use of combined ground control technology(e.g.ground support,rock mass modification,and destressing)has been demonstrated to be an effective measure for rock control of deep roadways.The developed hydraulic shields for 1000 m deep ultra-long working face can effectively improve the stability of surrounding rocks and mining efficiency in the longwall face.The ground control challenges in deep underground coal mines in China are discussed,and further research is recommended in terms of theory and technology for ground control in deep roadways and longwall faces. 展开更多
关键词 deep underground coal mine Mechanical behavior Mining-induced stress Mining-induced fractures Ground control for roadways Ground control for working face
下载PDF
Pore-pressure and stress-coupled creep behavior in deep coal:Insights from real-time NMR analysis 被引量:1
5
作者 Wenhao Jia Hongwei Zhou +3 位作者 Senlin Xie Yimeng Wang Xinfeng Hu Lei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期77-90,共14页
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi... Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal. 展开更多
关键词 Real-time monitoring Pore pressure-stress coupling Microscopic pore-fracture structure Variable-order fractional creep model deep coal
下载PDF
Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs
6
作者 Fan Yang Honggang Mi 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2637-2656,共20页
The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mec... The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mechanism of proppant in deep coal reservoir is not clear at present.To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs,an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted.The study systematically analyzed the impact of various fracture geometries,proppant types and fracturingfluid viscosities on proppant distribution.Furthermore,the study compared the outcomes of dynamic proppant transport experiments with simulation results.The results show that the numerical simulation is consistent with the results of the proppant dynamic sand-carrying experiment.Under the conditions of low viscosity and large pumping-rate,a high ratio of 40/70 mesh proppant can facilitate the movement of the proppant to the depths of fractures at all levels.The technical goal is to create comprehensive fracture support within intricate trapezoidal fractures in deep coal and rock reservoirs without inducing sand plugging.The sand ratio is controlled at 15%–20%,with a proppant combination ratio of 40/70:30/50:20/40=6:3:1.Proppant pumping operations can effectively address the issue of poor support in complex fractures in deep coal formations.The research results have been successfully applied to the development of deep coalbed methane in the Linxing-Shenfu block,Ordos Basin. 展开更多
关键词 deep coal fracture reticular fracture proppant density fracture conductivity proppant transportation
下载PDF
Ground stability of underground gateroad with 1 km burial depth: A case study from Xingdong coal mine, China 被引量:13
7
作者 ZHANG Guang-chao HE Fu-lian +1 位作者 LAI Yong-hui JIA Hong-guo 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第6期1386-1398,共13页
This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechani... This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechanical properties tests were first conducted in the test site. Then, the deformation behavior, stress and yield zone distributions, as well as the bolts load of the gateroad, were simulated using FLAC3D software. The model results demonstrated that the soft rock properties and high in situ stress were the main factors for the deep gateroad instability, and the shear slip failure induced by the high stress was the primary failure model for the deep rock mass. In addition, the unsuitable support patterns, especially the relatively short bolts/cables with low pre-tensions, the lack of high-strengthen secondary supports and the unsupported floor strata, also contributed to the gateroad instability. Subsequently, a new combined supporting strategy, incorporating longer bolts/cables, yielding ring supports, and grouting measures, was proposed for the deep gateroad, and its validity was verified via field monitoring. All these could be a reference for understanding the failure mechanism of the gateroad with 1 km burial depth. 展开更多
关键词 deep coal mine soft rock burial depth failure mechanism deformation behavior support strategy
下载PDF
Surrounding rock control mechanism of deep coal roadways and its application 被引量:10
8
作者 Xie Shengrong Li Erpeng +3 位作者 Li Shijun Wang Jinguang He Chongchong Yang Yafeng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第3期429-434,共6页
Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, th... Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period. 展开更多
关键词 deep coal roadway Truss system Inverted arch deflection Equivalent uniform load Powerful anchor support
下载PDF
Soft–strong supporting mechanism of gob-side entry retaining in deep coal seams threatened by rockburst 被引量:9
9
作者 Ning Jianguo Wang Jun +2 位作者 Liu Xuesheng Qian Kun Sun Bi 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期805-810,共6页
When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body ... When gob-side entry retaining is implemented in deep coal seams threatened by rockburst, the cementbased supporting body beside roadway will bear greater roof pressure and strong impact load. Then the supporting body may easily deform and fail because of its low strength in the early stage. This paper established the roadside support mechanical model of gob-side entry retaining. Based on this model,we proposed and used the soft–strong supporting body as roadside support in the gob-side entry retaining. In the early stage of roof movement, the soft–strong supporting body has a better compressibility, which can not only relieve roof pressure and strong impact load, but also reduce the supporting resistance and prevent the supporting body from being crushed. In the later stage, with the increase of the strength of the supporting body, it can better support the overlying roof. The numerical simulation results and industrial test show that the soft–strong supporting body as roadside support can be better applied into the gob-side entry retaining in deep coal seams threatened by rockburst. 展开更多
关键词 deep coal seam Rockburst Gob-side entry retaining Soft-strong supporting body
下载PDF
Evolution characteristics of precursor information of coal and gas outburst in deep rock cross‑cut coal uncovering 被引量:1
10
作者 Jupeng Tang Xin Zhang +2 位作者 Shengjie Sun Yishan Pan Liping Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第1期138-150,共13页
As mines become deeper,the potential for coal and gas outbursts in deep rock cross-cut coal uncovering is enhanced.The outburst precursors are unclear,which restricts the effectiveness and reliability of warning syste... As mines become deeper,the potential for coal and gas outbursts in deep rock cross-cut coal uncovering is enhanced.The outburst precursors are unclear,which restricts the effectiveness and reliability of warning systems.To reveal the evolution characteristics of coal and gas outburst precursor information in deep rock cross-cut coal uncovering,briquette specimens are constructed and experiments are conducted using a self-developed true triaxial outburst test system.Using acoustic emission monitoring technology,the dynamic failure of coal is monitored,and variations in the root mean square(RMS)of the acoustic emissions allow the effective cracking time and effective cracking gas pressure to be defined.These characteristics are obviously different in deep and shallow coal.The characteristic parameters of gas outburst exhibit stepwise variations at different depths.The RMS and cumulative RMS have stepped failure characteristics with respect to changes in gas pressure.The characteristic parameters of coal failure are negatively correlated with the average in-situ stress and effective stress,but positively correlated with the lateral pressure coefficient of in-situ stress and the critical gas pressure.The transition characteristics are highly sensitive in all cases.The critical depth between deep and shallow coal and gas outbursts is 1700 m.The expansion multiple of acoustic emission intensity from the microfracture stage to the sharp-fracture stage of coal is defined as the outburst risk index,N1.For depths of 1100–1700 m,N1≥7 denotes a higher risk of outburst,whereas at depths of 1700–2500 m,N1≥3 indicates enhanced risk. 展开更多
关键词 deep coal and gas outburst Rock cross-cut coal uncovering Acoustic emission Critical gas pressure Risk index
下载PDF
Microstructure and its influence on CH_4 adsorption behavior of deep coal 被引量:1
11
作者 冯艳艳 江成发 +1 位作者 刘代俊 储伟 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期539-545,共7页
In this paper we investigate the influence of microstructure on the CH4 adsorption behavior of deep coal. The coal microstructure is characterized by N2 adsorption at 77 K, scanning electron microscopy (SEM), Raman ... In this paper we investigate the influence of microstructure on the CH4 adsorption behavior of deep coal. The coal microstructure is characterized by N2 adsorption at 77 K, scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The CH4 adsorptions are measured at 298 K at pressures up to 5.0 MPa by the the volumetric method and fitted by the Langmuir model. The results show that the Langmuir model fits well with the experimental data, and there is a positive correlation with surface area, pore volume, ID/IG, and CH4 adsorption capacity. The burial depth also affects the methane adsorption capacity of the samples. 展开更多
关键词 CH4 adsorption deep coal pore structure surface morphology
下载PDF
Gas-solid coupling laws for deep high-gas coal seams 被引量:3
12
作者 Zhou Aitao Wang Kai +1 位作者 Fan Lingpeng T.A. Kiryaeva 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期675-679,共5页
A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical ... A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans. 展开更多
关键词 deep mining Gassy coal seam Gas-solid coupling Dynamic disaster
下载PDF
Study of a low-disturbance pressure-preserving corer and its coring performance in deep coal mining conditions
13
作者 Wei Huang Jianan Li +3 位作者 Zhiqiang Liu Mingqing Yang Zhenxi You Heping Xie 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1397-1410,共14页
With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content... With the increasing depth of coal mining,the requirements for coring devices that maintain pressure are increasing.To adapt to the special environment in deep coal seams and improve the accuracy of testing gas content,a low-disturbance pressure-preserving corer was developed.The measurement of gas content using this corer was analyzed.The coring test platform was used to complete a coring function test.A pressurized core with a diameter of 50 mm was obtained.The pressure was 0.15 MPa,which was equal to the pressure of the liquid column of the cored layer,indicating that the corer can be successfully used in a mud environment.Next,a pressure test of the corer was conducted.The results showed that under conditions of low pressure(8 MPa)and high pressure(25 MPa),the internal pressure of the corer remained stable for more than 1 h,indicating that the corer has good ability to maintain pressure.Therefore,the corer can be applied at deep coal mine sites.The results of this research can be used to promote the safe exploitation of deep coal mines and the exploitation of methane resources in coalbeds. 展开更多
关键词 Pressure-preserving corer Low-disturbance Coring performance deep coal mining conditions
下载PDF
RESEARCH ON DEEP COAL SEAM MINING FLOOR STARTA WATER BURSTING INFLUENCED FACTORS BASED ON ANALYTIC HIERACHY PROCESS
14
作者 SUN Ming ZHENG Wenxiang DUAN Xiaobo 《International Journal of Technology Management》 2014年第4期135-138,共4页
Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata w... Deep coal seam mining floor strata water bursting is a complicate nonlinear system, whose factors are coupling and influencing themselves. It built the analytic structure model for deep coal seam mining floor strata water bursting, the judgment matrix was found by the expert scoring method, the contribution weights of the influenced factors were given out by the equation analytic process. The thirteen controlling factors and five main controlling factors were put award by analyzing weights, so the result was basically conform to the field practice. The expert scoring method and analytic process can convert the objective fact to the subjective cognition, so it is a method that can turn the qualitative into the quantitative. This can be relative objectively and precisely to study the question of many factors and grey box. 展开更多
关键词 deep coal seam mining floor strata water bursting expert scoring method equation analytic hierachy process controllingfactors main controlling factors
下载PDF
Performance Evaluation of Low-Carbon and Clean Transformation of China’s Coal Economy
15
作者 Liangfeng Zhu 《Journal of Environmental Science and Engineering(B)》 2024年第1期21-38,共18页
In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.Th... In China,the oversupply of coal occurred in 2009,and from that year onwards,China’s coal economy began a low-carbon and clean transformation.Evaluating transformation performance is the research goal of this paper.The data collection for this paper includes data on deep processing of Chinese coal products from 2009 to 2020,as well as data on asset structure evolution and financial performance of 34 listed companies in the Chinese coal mining.Entropy value method is used to calculate the entropy value of low-carbon transformation,and the regression analysis is used to study the performance of cleaner transformation,the conclusion is as follows:(1)From 2009 to 2020,in China’s total energy consumption,coal consumption accounted for 71.6%in 2009 and 56.8%in 2020,the goals set by the state have been achieved.(2)The national goal of reducing the proportion of coal consumption and reducing carbon emissions has forced the transformation of deep processing of coal products.The transformation of coal enterprises towards low-carbon and clean production has achieved remarkable results.(3)From 2009 to 2020,the non coal industry income of 34 listed companies in China’s coal mining industry increased by 8.21%annually.At the same time,the asset structure was adjusted,and nearly 80%of the asset structure evolution showed an orderly development trend.(4)The regression analysis results show that the entropy value of coal deep processing products and the entropy value of asset structure adjustment are significantly related to transformation performance.The paper proposes to summarize the successful experience of China’s coal energy economic transformation,lay a foundation for achieving the carbon peak and carbon neutral goals in the future,further increase the intensity of coal deep processing,increase the proportion of clean energy in total energy consumption,and strive to control asset operation towards the goal of increasing the proportion of non coal industry income. 展开更多
关键词 coal economy low-carbon and clean transformation deep processing of coal evolution of asset structure performance appraisal
下载PDF
Coal seam drainage enhancement using borehole presplitting basting technology——A case study in Huainan 被引量:4
16
作者 Chen Xianzhan Xue Sheng Yuan Liang 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第5期771-775,共5页
Xinji No. 2 underground coal mine extracts the coal seams #4 and #5. These two seams are highly gassy and gas drainage is required to control mine gas emission and reduce outburst risk. Because the seam permeability c... Xinji No. 2 underground coal mine extracts the coal seams #4 and #5. These two seams are highly gassy and gas drainage is required to control mine gas emission and reduce outburst risk. Because the seam permeability coefficient is very low and around 0.1 m^2/(MPa^2·d), a number of technologies have been trialled to enhance the seam permeability prior to gas drainage. Of these technologies trialled, the deep borehole presplitting blasting technology has been proven to be quite effective in increasing permeability. In Xinji No. 2 mine it doubled or sometimes tripled gas drainage volume. This paper describes the technology, its application in the enhancement of seam permeability in Xinji No. 2 coal mine, and its effect on gas drainage performance. 展开更多
关键词 coal mining Gas drainage PERMEABILITY ENHANCEMENT deep hole BLASTING
下载PDF
基于组合赋权三维云评估技术的深部煤矿顶板事故风险分析 被引量:2
17
作者 程磊 许艳之 景国勋 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期413-422,共10页
为了更好地对深部煤矿顶板事故展开风险评价,提出了组合赋权三维云评估技术。基于事故统计及事故致因理论,对深部煤矿顶板事故风险指标体系展开研究,采用博弈论对改进层次分析法(Analytic Hierarchy Process,AHP)和熵权法进行博弈分析,... 为了更好地对深部煤矿顶板事故展开风险评价,提出了组合赋权三维云评估技术。基于事故统计及事故致因理论,对深部煤矿顶板事故风险指标体系展开研究,采用博弈论对改进层次分析法(Analytic Hierarchy Process,AHP)和熵权法进行博弈分析,以实现风险指标的组合赋权,通过构建三维云模型,对深部煤矿顶板事故危险性进行可视化分析。结果表明:包括行为、技术、设备、环境、管理5大风险因素在内的一级指标并其下20个二级风险指标是深部煤矿顶板事故风险评价指标体系的主体内容,且以环境风险权重最大;由三维云评估技术分析可知,平煤九矿的顶板事故风险级别为Ⅲ级,即修复后可接受,与该矿生产实际情况相符。组合赋权三维云评估技术的提出有助于完善深部煤矿顶板事故风险评价方法,可应用于工程实践。 展开更多
关键词 安全工程 深部煤矿 顶板事故 风险评估 指标体系 组合赋权 三维云评估模型
下载PDF
基于DeepLabv3+与GF-2高分辨率影像的露天煤矿区土地利用分类 被引量:11
18
作者 张成业 李飞跃 +4 位作者 李军 邢江河 杨金中 郭俊廷 杜守航 《煤田地质与勘探》 CAS CSCD 北大核心 2022年第6期94-103,共10页
遥感与深度学习为及时掌握露天煤矿区土地利用情况提供了高效率的技术手段。基于国产高分二号(GF-2)卫星高分辨率遥感影像,利用深度学习DeepLabv3+模型实现露天煤矿区土地利用识别,并与U-Net、FCN、随机森林、支持向量机、最大似然法等... 遥感与深度学习为及时掌握露天煤矿区土地利用情况提供了高效率的技术手段。基于国产高分二号(GF-2)卫星高分辨率遥感影像,利用深度学习DeepLabv3+模型实现露天煤矿区土地利用识别,并与U-Net、FCN、随机森林、支持向量机、最大似然法等方法进行对比。首先,制作高分辨率影像样本数据,通过敏感性测试确定适合研究区露天煤矿场景的样本最佳裁剪尺寸和方式;然后,训练深度神经网络DeepLabv3+模型,进行土地利用识别实验;最后,比较不同方法的识别结果。结果表明:研究区露天煤矿场景下的样本最佳裁剪尺寸为512像素×512像素,最佳裁剪方式为随机裁剪。采用的DeepLabv3+模型对露天煤矿区土地利用识别的总体精度、Kappa系数分别为80.10%、0.73,均优于U-Net、FCN、随机森林、支持向量机、最大似然法等方法的识别精度。DeepLabv3+模型的识别速度与上述5种方法保持在同一数量级,验证了DeepLabv3+模型和GF-2卫星影像在露天煤矿区土地利用识别中的可行性,对露天煤矿区生态环境监测与修复规划具有重要意义。 展开更多
关键词 露天煤矿区 土地利用 高分辨率影像 深度学习 神经网络 高分二号卫星 自动识别 识别精度
下载PDF
高温采煤工作面全风流路径风温及冷负荷预测方法研究 被引量:1
19
作者 李延河 万志军 +4 位作者 于振子 师鹏 赵万里 甄正 张源 《煤炭工程》 北大核心 2024年第11期171-175,共5页
为改善井下工作环境,打破高温矿井逢夏停工停产的困境,以平煤股份十矿为工程背景,提出了基于全风流路径风温预测的采煤工作面冷负荷计算方法。建立了采煤工作面温度场数值模型,分析了入口风温与控温靶区温度值的依变关系;设置控温靶区... 为改善井下工作环境,打破高温矿井逢夏停工停产的困境,以平煤股份十矿为工程背景,提出了基于全风流路径风温预测的采煤工作面冷负荷计算方法。建立了采煤工作面温度场数值模型,分析了入口风温与控温靶区温度值的依变关系;设置控温靶区目标温度值,并通过焓差法对制冷前后的采煤工作面冷负荷进行计算。研究结果表明,以采煤工作面上端头超前工作面50 m为控温靶区,入口温度与控温靶区温度的依变关系为:y=89.57-72.88×0.99^(x);降温前,入口风温为30℃,控温靶区温度为35.7℃。降温后,入口风温为13.6℃,控温靶区温度为26℃;降温前工作面入口风流焓值为85.53 kJ/kg,控温靶区风流焓值为128.88 kJ/kg;降温后工作面入口风流焓值为28.36 kJ/kg,控温靶区风流焓值为66.77 kJ/kg。工作面的冷负荷为2286.8 kW。制冷机组制冷量为2300 kW,机组运行后工作面温度平均降低7~10℃,湿度降低20%以上,降温除湿效果明显。 展开更多
关键词 深部矿井 高温采煤工作面 风温预测 冷负荷计算
下载PDF
深部开采高温热液侵蚀煤自燃特性 被引量:2
20
作者 潘荣锟 胡代民 +3 位作者 贾海林 晁江坤 沈何迪 刘伟 《煤炭学报》 EI CAS CSCD 北大核心 2024年第4期1906-1916,共11页
深部开采过程中,矿井水温度显著高于浅部煤层,高温热液侵蚀作用影响着煤体物化特征,进而对其自然发火特性产生影响。为研究深部开采热液侵蚀作用下的煤自然发火特性及其影响机制,通过低场核磁共振、分子动力学模拟、力学测试及C600微量... 深部开采过程中,矿井水温度显著高于浅部煤层,高温热液侵蚀作用影响着煤体物化特征,进而对其自然发火特性产生影响。为研究深部开采热液侵蚀作用下的煤自然发火特性及其影响机制,通过低场核磁共振、分子动力学模拟、力学测试及C600微量热实验,分析了热液侵蚀作用对煤体孔隙度、孔径分布、力学强度、氧化热特征参数的影响规律,并结合相关性分析,定量描述了各个参数间的相关度。研究结果表明:热液侵蚀煤体受热应力和溶胀作用的双重影响,内部孔隙结构发生显著变化,热液温度与煤体总孔隙度之间存在显著正相关关系,相关系数为0.97;随着热液温度的升高,煤体总孔隙度由0.24%增长至1.35%,微孔占比由69%以上降至60%以下,中孔、大孔占比增大;煤体孔隙大小显著影响着氧气的扩散系数,随着煤体孔隙宽度的线性增加,氧气扩散系数呈指数增加;受高温热液侵蚀作用影响,煤体孔隙发育以及部分有机质的溶解显著降低了煤体的力学强度,从原煤到80℃热液侵蚀煤体,其抗压强度均值由23 MPa降低至11.6 MPa,降低了50%;相较于原煤,热液侵蚀煤体的放热强度更高,放热量更大,TH40、TH50、TH60、TH70、TH80放热量分别增加了12.61%、16.63%、17.32%、19.36%和25.02%,热液温度与煤氧化放热量间相关系数为0.92。高温热液侵蚀作用显著影响着煤的孔隙度及氧化过程,随着热液温度升高,煤体孔隙度增大,力学强度减弱,氧化过程耗氧量及氧化速率加快,放热量增加。高温热液侵蚀煤具有更高的自燃危险性,且热液温度越高,风险越大。 展开更多
关键词 煤自燃 深部开采 热液侵蚀 孔隙 氧化
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部