In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de...In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms.展开更多
In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution ...In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network.展开更多
Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological struct...Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed.展开更多
Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the ...Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.展开更多
基金This work was supported by the Shanxi Province Applied Basic Research Project,China(Grant No.201901D111100).Xiaoli Hao received the grant,and the URL of the sponsors’website is http://kjt.shanxi.gov.cn/.
文摘In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms.
基金supported by Shenzhen Science and Technology Innovation Committee under Grants No. JCYJ20170306170559215 and No. JCYJ20180302153918689。
文摘In this paper,we propose a hybrid model aiming to map the input noise vector to the label of the generated image by the generative adversarial network(GAN).This model mainly consists of a pre-trained deep convolution generative adversarial network(DCGAN)and a classifier.By using the model,we visualize the distribution of two-dimensional input noise,leading to a specific type of the generated image after each training epoch of GAN.The visualization reveals the distribution feature of the input noise vector and the performance of the generator.With this feature,we try to build a guided generator(GG)with the ability to produce a fake image we need.Two methods are proposed to build GG.One is the most significant noise(MSN)method,and the other utilizes labeled noise.The MSN method can generate images precisely but with less variations.In contrast,the labeled noise method has more variations but is slightly less stable.Finally,we propose a criterion to measure the performance of the generator,which can be used as a loss function to effectively train the network.
基金Supported by the Strategy Priority Research Program of Chinese Academy of Sciences(No.XDC02070600).
文摘Graph embedding aims to map the high-dimensional nodes to a low-dimensional space and learns the graph relationship from its latent representations.Most existing graph embedding methods focus on the topological structure of graph data,but ignore the semantic information of graph data,which results in the unsatisfied performance in practical applications.To overcome the problem,this paper proposes a novel deep convolutional adversarial graph autoencoder(GAE)model.To embed the semantic information between nodes in the graph data,the random walk strategy is first used to construct the positive pointwise mutual information(PPMI)matrix,then,graph convolutional net-work(GCN)is employed to encode the PPMI matrix and node content into the latent representation.Finally,the learned latent representation is used to reconstruct the topological structure of the graph data by decoder.Furthermore,the deep convolutional adversarial training algorithm is introduced to make the learned latent representation conform to the prior distribution better.The state-of-the-art experimental results on the graph data validate the effectiveness of the proposed model in the link prediction,node clustering and graph visualization tasks for three standard datasets,Cora,Citeseer and Pubmed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704221,11574178,and 61675115)the Taishan Scholar Project of Shandong Province,China(Grant No.tsqn201812059)。
文摘Computational ghost imaging(CGI)provides an elegant framework for indirect imaging,but its application has been restricted by low imaging performance.Herein,we propose a novel approach that significantly improves the imaging performance of CGI.In this scheme,we optimize the conventional CGI data processing algorithm by using a novel compressed sensing(CS)algorithm based on a deep convolution generative adversarial network(DCGAN).CS is used to process the data output by a conventional CGI device.The processed data are trained by a DCGAN to reconstruct the image.Qualitative and quantitative results show that this method significantly improves the quality of reconstructed images by jointly training a generator and the optimization process for reconstruction via meta-learning.Moreover,the background noise can be eliminated well by this method.