期刊文献+
共找到1,321篇文章
< 1 2 67 >
每页显示 20 50 100
Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks:Climatology,Interannual Variability,and Extremes 被引量:2
1
作者 Ya WANG Gang HUANG +6 位作者 Baoxiang PAN Pengfei LIN Niklas BOERS Weichen TAO Yutong CHEN BO LIU Haijie LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1299-1312,共14页
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth... Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes. 展开更多
关键词 generative adversarial networks model bias deep learning El Niño-Southern Oscillation marine heatwaves
下载PDF
Delineation of Integrated Anomaly with Generative Adversarial Networks and Deep Neural Networks in the Zhaojikou Pb-Zn Ore District,Southeast China
2
作者 DUAN Jilin LIU Yanpeng +4 位作者 ZHU Lixin MA Shengming GONG Qiuli Alla DOLGOPOLOVA Simone A.LUDWIG 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第4期1252-1267,共16页
Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/... Geochemical maps are of great value in mineral exploration.Integrated geochemical anomaly maps provide comprehensive information about mapping assemblages of element concentrations to possible types of mineralization/ore,but vary depending on expert's knowledge and experience.This paper aims to test the capability of deep neural networks to delineate integrated anomaly based on a case study of the Zhaojikou Pb-Zn deposit,Southeast China.Three hundred fifty two samples were collected,and each sample consisted of 26 variables covering elemental composition,geological,and tectonic information.At first,generative adversarial networks were adopted for data augmentation.Then,DNN was trained on sets of synthetic and real data to identify an integrated anomaly.Finally,the results of DNN analyses were visualized in probability maps and compared with traditional anomaly maps to check its performance.Results showed that the average accuracy of the validation set was 94.76%.The probability maps showed that newly-identified integrated anomalous areas had a probability of above 75%in the northeast zones.It also showed that DNN models that used big data not only successfully recognized the anomalous areas identified on traditional geochemical element maps,but also discovered new anomalous areas,not picked up by the elemental anomaly maps previously. 展开更多
关键词 deep learning deep neural networks generative adversarial networks geochemical map Pb-Zn deposit
下载PDF
Automated Video Generation of Moving Digits from Text Using Deep Deconvolutional Generative Adversarial Network
3
作者 Anwar Ullah Xinguo Yu Muhammad Numan 《Computers, Materials & Continua》 SCIE EI 2023年第11期2359-2383,共25页
Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for tem... Generating realistic and synthetic video from text is a highly challenging task due to the multitude of issues involved,including digit deformation,noise interference between frames,blurred output,and the need for temporal coherence across frames.In this paper,we propose a novel approach for generating coherent videos of moving digits from textual input using a Deep Deconvolutional Generative Adversarial Network(DD-GAN).The DDGAN comprises a Deep Deconvolutional Neural Network(DDNN)as a Generator(G)and a modified Deep Convolutional Neural Network(DCNN)as a Discriminator(D)to ensure temporal coherence between adjacent frames.The proposed research involves several steps.First,the input text is fed into a Long Short Term Memory(LSTM)based text encoder and then smoothed using Conditioning Augmentation(CA)techniques to enhance the effectiveness of the Generator(G).Next,using a DDNN to generate video frames by incorporating enhanced text and random noise and modifying a DCNN to act as a Discriminator(D),effectively distinguishing between generated and real videos.This research evaluates the quality of the generated videos using standard metrics like Inception Score(IS),Fréchet Inception Distance(FID),Fréchet Inception Distance for video(FID2vid),and Generative Adversarial Metric(GAM),along with a human study based on realism,coherence,and relevance.By conducting experiments on Single-Digit Bouncing MNIST GIFs(SBMG),Two-Digit Bouncing MNIST GIFs(TBMG),and a custom dataset of essential mathematics videos with related text,this research demonstrates significant improvements in both metrics and human study results,confirming the effectiveness of DD-GAN.This research also took the exciting challenge of generating preschool math videos from text,handling complex structures,digits,and symbols,and achieving successful results.The proposed research demonstrates promising results for generating coherent videos from textual input. 展开更多
关键词 generative adversarial Network(GAN) deconvolutional neural network convolutional neural network Inception Score(IS) temporal coherence Fréchet Inception Distance(FID) generative adversarial Metric(GAM)
下载PDF
RETRACTED:<i>Realization of Virtual Human Face Based on Deep Convolutional Generative Adversarial Networks</i>
4
作者 Zijiang Zhu Xiaoguang Deng +1 位作者 Junshan Li Eryou Wei 《Journal of Signal and Information Processing》 2018年第3期217-228,共12页
Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retracti... Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Baozong Yuan(EiC of JSIP) The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED". 展开更多
关键词 deep Convolution generative adversarial networks deep Learning Vir-tual Human FACE
下载PDF
Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
5
作者 程晓昱 解晨雪 +6 位作者 刘宇伦 白瑞雪 肖南海 任琰博 张喜林 马惠 蒋崇云 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期112-117,共6页
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b... Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices. 展开更多
关键词 two-dimensional materials deep learning data augmentation generating adversarial networks
下载PDF
Fetal MRI Artifacts: Semi-Supervised Generative Adversarial Neural Network for Motion Artifacts Reducing in Fetal Magnetic Resonance Images
6
作者 Ítalo Messias Félix Santos Gilson Antonio Giraldi +1 位作者 Heron Werner Junior Bruno Richard Schulze 《Journal of Computer and Communications》 2024年第6期210-225,共16页
This study addresses challenges in fetal magnetic resonance imaging (MRI) related to motion artifacts, maternal respiration, and hardware limitations. To enhance MRI quality, we employ deep learning techniques, specif... This study addresses challenges in fetal magnetic resonance imaging (MRI) related to motion artifacts, maternal respiration, and hardware limitations. To enhance MRI quality, we employ deep learning techniques, specifically utilizing Cycle GAN. Synthetic pairs of images, simulating artifacts in fetal MRI, are generated to train the model. Our primary contribution is the use of Cycle GAN for fetal MRI restoration, augmented by artificially corrupted data. We compare three approaches (supervised Cycle GAN, Pix2Pix, and Mobile Unet) for artifact removal. Experimental results demonstrate that the proposed supervised Cycle GAN effectively removes artifacts while preserving image details, as validated through Structural Similarity Index Measure (SSIM) and normalized Mean Absolute Error (MAE). The method proves comparable to alternatives but avoids the generation of spurious regions, which is crucial for medical accuracy. 展开更多
关键词 Fetal MRI Artifacts Removal deep Learning Image Processing generative adversarial networks
下载PDF
Using Hybrid Penalty and Gated Linear Units to Improve Wasserstein Generative Adversarial Networks for Single-Channel Speech Enhancement
7
作者 Xiaojun Zhu Heming Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2155-2172,共18页
Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as con... Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model. 展开更多
关键词 Speech enhancement generative adversarial networks hybrid penalty gated linear units multi-scale convolution
下载PDF
Cross-Band Spectrum Prediction Algorithm Based on Data Conversion Using Generative Adversarial Networks
8
作者 Chuang Peng Rangang Zhu +1 位作者 Mengbo Zhang Lunwen Wang 《China Communications》 SCIE CSCD 2023年第10期136-152,共17页
Spectrum prediction is one of the new techniques in cognitive radio that predicts changes in the spectrum state and plays a crucial role in improving spectrum sensing performance.Prediction models previously trained i... Spectrum prediction is one of the new techniques in cognitive radio that predicts changes in the spectrum state and plays a crucial role in improving spectrum sensing performance.Prediction models previously trained in the source band tend to perform poorly in the new target band because of changes in the channel.In addition,cognitive radio devices require dynamic spectrum access,which means that the time to retrain the model in the new band is minimal.To increase the amount of data in the target band,we use the GAN to convert the data of source band into target band.First,we analyze the data differences between bands and calculate FID scores to identify the available bands with the slightest difference from the target predicted band.The original GAN structure is unsuitable for converting spectrum data,and we propose the spectrum data conversion GAN(SDC-GAN).The generator module consists of a convolutional network and an LSTM module that can integrate multiple features of the data and can convert data from the source band to the target band.Finally,we use the generated target band data to train the prediction model.The experimental results validate the effectiveness of the proposed algorithm. 展开更多
关键词 cognitive radio cross-band spectrum prediction deep learning generative adversarial network
下载PDF
Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network 被引量:2
9
作者 Xiaoli Hao Xiaojuan Meng +2 位作者 Yueqin Zhang JinDong Xue Jinyue Xia 《Computers, Materials & Continua》 SCIE EI 2021年第11期2671-2685,共15页
In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only de... In underground mining,the belt is a critical component,as its state directly affects the safe and stable operation of the conveyor.Most of the existing non-contact detection methods based on machine vision can only detect a single type of damage and they require pre-processing operations.This tends to cause a large amount of calculation and low detection precision.To solve these problems,in the work described in this paper a belt tear detection method based on a multi-class conditional deep convolutional generative adversarial network(CDCGAN)was designed.In the traditional DCGAN,the image generated by the generator has a certain degree of randomness.Here,a small number of labeled belt images are taken as conditions and added them to the generator and discriminator,so the generator can generate images with the characteristics of belt damage under the aforementioned conditions.Moreover,because the discriminator cannot identify multiple types of damage,the multi-class softmax function is used as the output function of the discriminator to output a vector of class probabilities,and it can accurately classify cracks,scratches,and tears.To avoid the features learned incompletely,skiplayer connection is adopted in the generator and discriminator.This not only can minimize the loss of features,but also improves the convergence speed.Compared with other algorithms,experimental results show that the loss value of the generator and discriminator is the least.Moreover,its convergence speed is faster,and the mean average precision of the proposed algorithm is up to 96.2%,which is at least 6%higher than that of other algorithms. 展开更多
关键词 Multi-class detection conditional deep convolution generative adversarial network conveyor belt tear skip-layer connection
下载PDF
Automated Delineation of Smallholder Farm Fields Using Fully Convolutional Networks and Generative Adversarial Networks 被引量:1
10
作者 Qiuyu YAN Wufan ZHAO +1 位作者 Xiao HUANG Xianwei LYU 《Journal of Geodesy and Geoinformation Science》 2022年第4期10-22,共13页
Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due... Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due to their small size,irregular shape,and the use of mixed-cropping techniques,the farm fields of smallholder can be difficult to delineate automatically.In recent years,numerous studies on field contour extraction using a deep Convolutional Neural Network(CNN)have been proposed.However,there is a relative shortage of labeled data for filed boundaries,thus affecting the training effect of CNN.Traditional methods mostly use image flipping,and random rotation for data augmentation.In this paper,we propose to apply Generative Adversarial Network(GAN)for the data augmentation of farm fields label to increase the diversity of samples.Specifically,we propose an automated method featured by Fully Convolutional Neural networks(FCN)in combination with GAN to improve the delineation accuracy of smallholder farms from Very High Resolution(VHR)images.We first investigate four State-Of-The-Art(SOTA)FCN architectures,i.e.,U-Net,PSPNet,SegNet and OCRNet,to find the optimal architecture in the contour detection task of smallholder farm fields.Second,we apply the identified optimal FCN architecture in combination with Contour GAN and pixel2pixel GAN to improve the accuracy of contour detection.We test our method on the study area in the Sudano-Sahelian savanna region of northern Nigeria.The best combination achieved F1 scores of 0.686 on Test Set 1(TS1),0.684 on Test Set 2(TS2),and 0.691 on Test Set 3(TS3).Results indicate that our architecture adapts to a variety of advanced networks and proves its effectiveness in this task.The conceptual,theoretical,and experimental knowledge from this study is expected to seed many GAN-based farm delineation methods in the future. 展开更多
关键词 field boundary contour detection fully convolutional neural networks generative adversarial networks
下载PDF
MACDCGAN的发电机轴承故障诊断方法
11
作者 曹洁 尹浩楠 王进花 《振动与冲击》 EI CSCD 北大核心 2024年第11期227-235,共9页
在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成... 在实际工况中,发电机中传感器采集到的故障样本数据有限,使用基于深度学习的方法进行故障诊断存在过拟合问题导致模型泛化能力较差以及诊断精度不高。为了解决这个问题,采用样本扩充的思路,提出了一种改进的辅助分类器条件深度卷积生成对抗网络(MACDCGAN)的故障诊断方法。通过对采集的一维时序信号进行小波变换增强特征,构建简化结构参数的条件深度卷积生成对抗网络模型生成样本,并在模型中采用Wasserstein距离优化损失函数解决训练过程中存在模式崩塌和梯度消失的缺点;通过添加一个独立的分类器来改进分类模型的兼容性,并在分类器中引入学习率衰减算法增加模型稳定性。试验结果表明,该方法可以有效地提高故障诊断的精度,并且验证了所提模型具有良好的泛化性能。 展开更多
关键词 发电机 特征提取 生成对抗网络(GAN) 卷积神经网络(CNN) 故障诊断
下载PDF
基于DCGAN的课堂表情图像生成方法
12
作者 徐新爱 李钢 《计算机与现代化》 2024年第8期88-91,126,共5页
为了构建课堂表情图像数据库,弥补特定条件下课堂表情多样性的不足,提出一种利用深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks,DCGAN)生成课堂表情图像的方法。首先,利用线下教学监控视频和线上课堂视频... 为了构建课堂表情图像数据库,弥补特定条件下课堂表情多样性的不足,提出一种利用深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Networks,DCGAN)生成课堂表情图像的方法。首先,利用线下教学监控视频和线上课堂视频自主采集课堂表情图像,得到较均衡且样本特征丰富的小型图像集;其次,对原始图像进行去雾、增强、镜像等图像预处理操作,构建课堂表情数据训练集;再次,通过对基于DCGAN模型的课堂表情图像生成网络的构建和初步参数设置,并不断优化网络超参数,以生成课堂表情图像数据集;最后,利用人脸检测算法和IS (Inception Score)评价指标对生成课堂表情图像进行检测和评价,并验证生成图像在检测网络中的可行性和有效性。实验结果表明:本文基于DCGAN的方法能够生成较逼真的课堂表情图像,能够有效地增广课堂表情数据集,增强课堂表情图像的多样性。 展开更多
关键词 深度学习 深度卷积生成对抗网络 图像生成 课堂表情
下载PDF
基于DCGAN算法的服装效果图生成方法 被引量:1
13
作者 郭宇轩 孙林 《毛纺科技》 CAS 北大核心 2024年第2期114-120,共7页
为了提高服装设计效率,适应时尚产品迭代加速的趋势,提出一种基于深度卷积对抗网络(DCGAN)的服装效果图生成方法。搭建适用于服装效果图生成任务的DCGAN模型,制作服装秀场数据集进行模型训练并生成服装效果图,设计师主观筛选具有设计参... 为了提高服装设计效率,适应时尚产品迭代加速的趋势,提出一种基于深度卷积对抗网络(DCGAN)的服装效果图生成方法。搭建适用于服装效果图生成任务的DCGAN模型,制作服装秀场数据集进行模型训练并生成服装效果图,设计师主观筛选具有设计参考价值的生成服装效果图,计算有效生成图像比例,评估该模型性能和生成图像质量,通过人机交互的方式优化部分生成图像并形成最终设计方案。结果表明:优化后的DCGAN模型可以快速提取流行趋势生成创意设计方案,辅助设计师高效完成设计效果表达,为服装设计的智能化提供有效途径和方法参考。 展开更多
关键词 卷积神经网络 dcgan 服装效果图 交互设计 深度学习
下载PDF
Semi-Supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification 被引量:34
14
作者 Ya Tu Yun Lin +1 位作者 Jin Wang Jeong-Uk Kim 《Computers, Materials & Continua》 SCIE EI 2018年第5期243-254,共12页
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp... Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier. 展开更多
关键词 deep Learning automated modulation classification semi-supervised learning generative adversarial networks
下载PDF
Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks 被引量:8
15
作者 Husam A.H.Al-Najjar Biswajeet Pradhan 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期625-637,共13页
In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory... In recent years,landslide susceptibility mapping has substantially improved with advances in machine learning.However,there are still challenges remain in landslide mapping due to the availability of limited inventory data.In this paper,a novel method that improves the performance of machine learning techniques is presented.The proposed method creates synthetic inventory data using Generative Adversarial Networks(GANs)for improving the prediction of landslides.In this research,landslide inventory data of 156 landslide locations were identified in Cameron Highlands,Malaysia,taken from previous projects the authors worked on.Elevation,slope,aspect,plan curvature,profile curvature,total curvature,lithology,land use and land cover(LULC),distance to the road,distance to the river,stream power index(SPI),sediment transport index(STI),terrain roughness index(TRI),topographic wetness index(TWI)and vegetation density are geo-environmental factors considered in this study based on suggestions from previous works on Cameron Highlands.To show the capability of GANs in improving landslide prediction models,this study tests the proposed GAN model with benchmark models namely Artificial Neural Network(ANN),Support Vector Machine(SVM),Decision Trees(DT),Random Forest(RF)and Bagging ensemble models with ANN and SVM models.These models were validated using the area under the receiver operating characteristic curve(AUROC).The DT,RF,SVM,ANN and Bagging ensemble could achieve the AUROC values of(0.90,0.94,0.86,0.69 and 0.82)for the training;and the AUROC of(0.76,0.81,0.85,0.72 and 0.75)for the test,subsequently.When using additional samples,the same models achieved the AUROC values of(0.92,0.94,0.88,0.75 and 0.84)for the training and(0.78,0.82,0.82,0.78 and 0.80)for the test,respectively.Using the additional samples improved the test accuracy of all the models except SVM.As a result,in data-scarce environments,this research showed that utilizing GANs to generate supplementary samples is promising because it can improve the predictive capability of common landslide prediction models. 展开更多
关键词 Landslide susceptibility INVENTORY Machine learning generative adversarial network convolutional neural network Geographic information system
下载PDF
Specialized deep neural networks for battery health prognostics:Opportunities and challenges
16
作者 Jingyuan Zhao Xuebing Han +1 位作者 Minggao Ouyang Andrew F.Burke 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期416-438,I0011,共24页
Lithium-ion batteries are key drivers of the renewable energy revolution,bolstered by progress in battery design,modelling,and management.Yet,achieving high-performance battery health prognostics is a significant chal... Lithium-ion batteries are key drivers of the renewable energy revolution,bolstered by progress in battery design,modelling,and management.Yet,achieving high-performance battery health prognostics is a significant challenge.With the availability of open data and software,coupled with automated simulations,deep learning has become an integral component of battery health prognostics.We offer a comprehensive overview of potential deep learning techniques specifically designed for modeling and forecasting the dynamics of multiphysics and multiscale battery systems.Following this,we provide a concise summary of publicly available lithium-ion battery test and cycle datasets.By providing illustrative examples,we emphasize the efficacy of five techniques capable of enhancing deep learning for accurate battery state prediction and health-focused management.Each of these techniques offers unique benefits.(1)Transformer models address challenges using self-attention mechanisms and positional encoding methods.(2) Transfer learning improves learning tasks within a target domain by leveraging knowledge from a source domain.(3) Physics-informed learning uses prior knowledge to enhance learning algorithms.(4)Generative adversarial networks(GANs) earn praise for their ability to generate diverse and high-quality outputs,exhibiting outstanding performance with complex datasets.(5) Deep reinforcement learning enables an agent to make optimal decisions through continuous interactions with its environment,thus maximizing cumulative rewards.In this Review,we highlight examples that employ these techniques for battery health prognostics,summarizing both their challenges and opportunities.These methodologies offer promising prospects for researchers and industry professionals,enabling the creation of specialized network architectures that autonomously extract features,especially for long-range spatial-temporal connections across extended timescales.The outcomes could include improved accuracy,faster training,and enhanced generalization. 展开更多
关键词 Lithium-ion batteries State of health LIFETIME deep learning Transformer Transfer learning Physics-informed learning generative adversarial networks Reinforcement learning Open data
下载PDF
Image Super-Resolution Based on Generative Adversarial Networks: A Brief Review 被引量:3
17
作者 Kui Fu Jiansheng Peng +2 位作者 Hanxiao Zhang Xiaoliang Wang Frank Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第9期1977-1997,共21页
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ... Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR. 展开更多
关键词 Single image super-resolution generative adversarial networks deep learning computer vision
下载PDF
A Sketch-Based Generation Model for Diverse Ceramic Tile Images Using Generative Adversarial Network
18
作者 Jianfeng Lu Xinyi Liu +2 位作者 Mengtao Shi Chen Cui Mahmoud Emam 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期2865-2882,共18页
Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this... Ceramic tiles are one of the most indispensable materials for interior decoration.The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures.In this paper,we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network(GAN).The generated tile images can be tailored to meet the specific needs of the user for the tile textures.The proposed method consists of four steps.Firstly,a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.Secondly,for each ceramic tile image in the dataset,the corresponding sketch image is generated and then the mapping relationship between the images is trained based on a sketch extraction network using ResNet Block and jump connection to improve the quality of the generated sketches.Thirdly,the sketch style is redefined according to the characteristics of the ceramic tile images and then double cross-domain adversarial loss functions are employed to guide the ceramic tile generation network for fitting in the direction of the sketch style and to improve the training speed.Finally,we apply hidden space perturbation and interpolation for further enriching the output textures style and satisfying the concept of“one style with multiple faces”.We conduct the training process of the proposed generation network on 2583 ceramic tile images dataset.To measure the generative diversity and quality,we use Frechet Inception Distance(FID)and Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)metrics.The experimental results prove that the proposed model greatly enhances the generation results of the ceramic tile images,with FID of 32.47 and BRISQUE of 28.44. 展开更多
关键词 Ceramic tile pattern design cross-domain learning deep learning GAN generative adversarial networks ResNet Block
下载PDF
Auxiliary Classifier of Generative Adversarial Network for Lung Cancer Diagnosis
19
作者 P.S.Ramapraba P.Epsiba +1 位作者 K.Umapathy E.Sivanantham 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2177-2189,共13页
The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Net... The classification of lung nodules is a challenging problem as the visual analysis of the nodules and non-nodules revealed homogenous textural patterns.In this work,an Auxiliary Classifier(AC)-Generative Adversarial Network(GAN)based Lung Cancer Classification(LCC)system is developed.The pro-posed AC-GAN-LCC system consists of three modules;preprocessing,Lungs Region Detection(LRD),and AC-GAN classification.A Wienerfilter is employed in the preprocessing module to remove the Gaussian noise.In the LRD module,only the lung regions(left and right lungs)are detected using itera-tive thresholding and morphological operations.In order to extract the lung region only,floodfilling and background subtraction.The detected lung regions are fed to the AC-GAN classifier to detect the nodules.It classifies the nodules into one of the two classes,i.e.,binary classification(such as nodules or non-nodules).The AC-GAN is the extended version of the conditional GAN that predicts the label of a given image.Three different optimization techniques,adaptive gradient optimi-zation,root mean square propagation optimization,and Adam optimization are employed for optimizing the AC-GAN architecture.The proposed AC-GAN-LCC system is evaluated on the Lung Image Database Consortium(LIDC)data-base Computed Tomography(CT)scan images.The proposed AC-GAN-LCC system classifies∼15000 CT slices(7310 non-nodules and 7685 nodules).It pro-vides an overall accuracy of 98.8%on the LIDC database using Adam optimiza-tion by a 10-fold cross-validation approach. 展开更多
关键词 Lung cancer generative adversarial network auxiliary classifier image classification system deep learning
下载PDF
A Generative Adversarial Networks for Log Anomaly Detection 被引量:1
20
作者 Xiaoyu Duan Shi Ying +2 位作者 Wanli Yuan Hailong Cheng Xiang Yin 《Computer Systems Science & Engineering》 SCIE EI 2021年第4期135-148,共14页
Detecting anomaly logs is a great significance step for guarding system faults.Due to the uncertainty of abnormal log types,lack of real anomaly logs and accurately labeled log datasets.Existing technologies cannot be... Detecting anomaly logs is a great significance step for guarding system faults.Due to the uncertainty of abnormal log types,lack of real anomaly logs and accurately labeled log datasets.Existing technologies cannot be enough for detecting complex and various log point anomalies by using human-defined rules.We propose a log anomaly detection method based on Generative Adversarial Networks(GAN).This method uses the Encoder-Decoder framework based on Long Short-Term Memory(LSTM)network as the generator,takes the log keywords as the input of the encoder,and the decoder outputs the generated log template.The discriminator uses the Convolutional Neural Networks(CNN)to identify the difference between the generated log template and the real log template.The model parameters are optimized automatically by iteration.In the stage of anomaly detection,the probability of anomaly is calculated by the Euclidean distance.Experiments on real data show that this method can detect log point anomalies with an average precision of 95%.Besides,it outperforms other existing log-based anomaly detection methods. 展开更多
关键词 generative adversarial networks anomaly detection data mining deep learning
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部