Robust face representation is imperative to highly accurate face recognition. In this work, we propose an open source face recognition method with deep representation named as VIPLFaceNet, which is a lO-layer deep con...Robust face representation is imperative to highly accurate face recognition. In this work, we propose an open source face recognition method with deep representation named as VIPLFaceNet, which is a lO-layer deep convolu- tional neural network with seven convolutional layers and three fully-connected layers. Compared with the well-known AlexNet, our VIPLFaceNet takes only 20% training time and 60% testing time, but achieves 40% drop in error rate on the real-world face recognition benchmark LFW. Our VIPLFaceNet achieves 98.60% mean accuracy on LFW us- ing one single network. An open-source C++ SDK based on VIPLFaceNet is released under BSD license. The SDK takes about 150ms to process one face image in a single thread on an i7 desktop CPU. VIPLFaceNet provides a state-of-the-art start point for both academic and industrial face recognition applications.展开更多
Based on the dividing of derormation zones of tailentry in working face and the classification of driving metbods, toking the way of field measurement, this paper fiuds out some changing regularities of main deformati...Based on the dividing of derormation zones of tailentry in working face and the classification of driving metbods, toking the way of field measurement, this paper fiuds out some changing regularities of main deformation parameters of a tailentry in 2# coal seam in Suncun Colliery with the incrcasing of mining depth, and puts forward some layout methods to protect the tailentry in deep mining.展开更多
Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retracti...Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Baozong Yuan(EiC of JSIP) The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".展开更多
Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning n...Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.展开更多
基金This work was partially supported by the National Basic Research Program of China (973 Program) (2015CB351802), and the National Natural Science Foundation of China (Grant Nos. 61402443, 61390511, 61379083, 61222211).
文摘Robust face representation is imperative to highly accurate face recognition. In this work, we propose an open source face recognition method with deep representation named as VIPLFaceNet, which is a lO-layer deep convolu- tional neural network with seven convolutional layers and three fully-connected layers. Compared with the well-known AlexNet, our VIPLFaceNet takes only 20% training time and 60% testing time, but achieves 40% drop in error rate on the real-world face recognition benchmark LFW. Our VIPLFaceNet achieves 98.60% mean accuracy on LFW us- ing one single network. An open-source C++ SDK based on VIPLFaceNet is released under BSD license. The SDK takes about 150ms to process one face image in a single thread on an i7 desktop CPU. VIPLFaceNet provides a state-of-the-art start point for both academic and industrial face recognition applications.
文摘Based on the dividing of derormation zones of tailentry in working face and the classification of driving metbods, toking the way of field measurement, this paper fiuds out some changing regularities of main deformation parameters of a tailentry in 2# coal seam in Suncun Colliery with the incrcasing of mining depth, and puts forward some layout methods to protect the tailentry in deep mining.
文摘Short Retraction Notice The authors claim that this paper needs modifications. This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused. Editor guiding this retraction: Prof. Baozong Yuan(EiC of JSIP) The full retraction notice in PDF is preceding the original paper, which is marked "RETRACTED".
文摘Most modern face recognition and classification systems mainly rely on hand-crafted image feature descriptors. In this paper, we propose a novel deep learning algorithm combining unsupervised and supervised learning named deep belief network embedded with Softmax regress (DBNESR) as a natural source for obtaining additional, complementary hierarchical representations, which helps to relieve us from the complicated hand-crafted feature-design step. DBNESR first learns hierarchical representations of feature by greedy layer-wise unsupervised learning in a feed-forward (bottom-up) and back-forward (top-down) manner and then makes more efficient recognition with Softmax regress by supervised learning. As a comparison with the algorithms only based on supervised learning, we again propose and design many kinds of classifiers: BP, HBPNNs, RBF, HRBFNNs, SVM and multiple classification decision fusion classifier (MCDFC)—hybrid HBPNNs-HRBFNNs-SVM classifier. The conducted experiments validate: Firstly, the proposed DBNESR is optimal for face recognition with the highest and most stable recognition rates;second, the algorithm combining unsupervised and supervised learning has better effect than all supervised learning algorithms;third, hybrid neural networks have better effect than single model neural network;fourth, the average recognition rate and variance of these algorithms in order of the largest to the smallest are respectively shown as DBNESR, MCDFC, SVM, HRBFNNs, RBF, HBPNNs, BP and BP, RBF, HBPNNs, HRBFNNs, SVM, MCDFC, DBNESR;at last, it reflects hierarchical representations of feature by DBNESR in terms of its capability of modeling hard artificial intelligent tasks.