期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Neighborhood fusion-based hierarchical parallel feature pyramid network for object detection 被引量:3
1
作者 Mo Lingfei Hu Shuming 《Journal of Southeast University(English Edition)》 EI CAS 2020年第3期252-263,共12页
In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid... In order to improve the detection accuracy of small objects,a neighborhood fusion-based hierarchical parallel feature pyramid network(NFPN)is proposed.Unlike the layer-by-layer structure adopted in the feature pyramid network(FPN)and deconvolutional single shot detector(DSSD),where the bottom layer of the feature pyramid network relies on the top layer,NFPN builds the feature pyramid network with no connections between the upper and lower layers.That is,it only fuses shallow features on similar scales.NFPN is highly portable and can be embedded in many models to further boost performance.Extensive experiments on PASCAL VOC 2007,2012,and COCO datasets demonstrate that the NFPN-based SSD without intricate tricks can exceed the DSSD model in terms of detection accuracy and inference speed,especially for small objects,e.g.,4%to 5%higher mAP(mean average precision)than SSD,and 2%to 3%higher mAP than DSSD.On VOC 2007 test set,the NFPN-based SSD with 300×300 input reaches 79.4%mAP at 34.6 frame/s,and the mAP can raise to 82.9%after using the multi-scale testing strategy. 展开更多
关键词 computer vision deep convolutional neural network object detection hierarchical parallel feature pyramid network multi-scale feature fusion
下载PDF
An Improved Data-Driven Topology Optimization Method Using Feature Pyramid Networks with Physical Constraints 被引量:1
2
作者 Jiaxiang Luo Yu Li +3 位作者 Weien Zhou ZhiqiangGong Zeyu Zhang Wen Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期823-848,共26页
Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image ... Deep learning for topology optimization has been extensively studied to reduce the cost of calculation in recent years.However,the loss function of the above method is mainly based on pixel-wise errors from the image perspective,which cannot embed the physical knowledge of topology optimization.Therefore,this paper presents an improved deep learning model to alleviate the above difficulty effectively.The feature pyramid network(FPN),a kind of deep learning model,is trained to learn the inherent physical law of topology optimization itself,of which the loss function is composed of pixel-wise errors and physical constraints.Since the calculation of physical constraints requires finite element analysis(FEA)with high calculating costs,the strategy of adjusting the time when physical constraints are added is proposed to achieve the balance between the training cost and the training effect.Then,two classical topology optimization problems are investigated to verify the effectiveness of the proposed method.The results show that the developed model using a small number of samples can quickly obtain the optimization structure without any iteration,which has not only high pixel-wise accuracy but also good physical performance. 展开更多
关键词 Topology optimization deep learning feature pyramid networks finite element analysis physical constraints
下载PDF
Detection of Multiscale Center Point Objects Based on Parallel Network 被引量:1
3
作者 Hao Chen Hong Zheng Xiaolong Li 《Journal of Artificial Intelligence and Technology》 2021年第1期68-73,共6页
Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-... Anchor-based detectors are widely used in object detection.To improve the accuracy of object detection,multiple anchor boxes are intensively placed on the input image,yet.Most of which are invalid.Although the anchor-free method can reduce the number of useless anchor boxes,the invalid ones still occupy a high proportion.On this basis,this paper proposes a multiscale center point object detection method based on parallel network to further reduce the number of useless anchor boxes.This study adopts the parallel network architecture of hourglass-104 and darknet-53 of which the first one outputs heatmaps to generate the center point for object feature location on the output attribute feature map of darknet-53.Combining feature pyramid and CIoU loss function,this algorithm is trained and tested on MSCOCO dataset,increasing the detection rate of target location and the accuracy rate of small object detection.Though resembling the state-of-the-art two-stage detectors in overall object detection accuracy,this algorithm is superior in speed. 展开更多
关键词 deep learning heatmap feature pyramid networks object detection center point
下载PDF
基于拉普拉斯金字塔残差网络的多尺度图像压缩研究
4
作者 田学军 章文强 +3 位作者 马梓轩 陈良哲 叶卉荣 舒忠 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期33-44,共12页
为了更好地进行图像重建,加强对图像多尺度特征表示和特征融合的处理,本研究提出一种新的多尺度特征融合图像重建网络模型。模型包括迭代降采样和迭代上采样过程。迭代降采样过程是通过在拉普拉斯金字塔残差控制网络模型中将高斯卷积核... 为了更好地进行图像重建,加强对图像多尺度特征表示和特征融合的处理,本研究提出一种新的多尺度特征融合图像重建网络模型。模型包括迭代降采样和迭代上采样过程。迭代降采样过程是通过在拉普拉斯金字塔残差控制网络模型中将高斯卷积核与子采样和高斯平滑滤波迭代操作规则相结合完成的。迭代上采样过程是通过使用拉普拉斯卷积核和二阶差分操作规则实现的。GJ-UNet深度学习网络模型通过其编码器下采样模块实现图像多尺度语义特征的精细分类,并在解码器上采样模块中应用反卷积和卷积操作规则,规范处理图像多尺度语义特征。实验表明,所提出的方法可以实现高精度的特征提取,同时对于图像特征融合的相关性更强,提取的图像边缘信息更清晰且相对噪声信息更低,重建图像的视觉效果基本与原始输入图像相同。本研究有望广泛应用于计算机图像视觉领域。 展开更多
关键词 压缩感知图像重构 图像多尺度特征 拉普拉斯金字塔模型 差分运算 GJ-UNet深度学习网络模型 Dice损失函数
下载PDF
基于Transformer的跨尺度交互学习伪装目标检测
5
作者 李建东 王岩 曲海成 《计算机系统应用》 2024年第2期115-124,共10页
伪装目标检测(COD)旨在精确且高效地检测出与背景高度相似的伪装物体,其方法可为物种保护、医学病患检测和军事监测等领域提供助力,具有较高的实用价值.近年来,采用深度学习方法进行伪装目标检测成为一个比较新兴的研究方向.但现有大多... 伪装目标检测(COD)旨在精确且高效地检测出与背景高度相似的伪装物体,其方法可为物种保护、医学病患检测和军事监测等领域提供助力,具有较高的实用价值.近年来,采用深度学习方法进行伪装目标检测成为一个比较新兴的研究方向.但现有大多数COD算法都是以卷积神经网络(CNN)作为特征提取网络,并且在结合多层次特征时,忽略了特征表示和融合方法对检测性能的影响.针对基于卷积神经网络的伪装目标检测模型对被检测目标的全局特征提取能力较弱问题,提出一种基于Transformer的跨尺度交互学习伪装目标检测方法.该模型首先提出了双分支特征融合模块,将经过迭代注意力的特征进行融合,更好地融合高低层特征;其次引入了多尺度全局上下文信息模块,充分联系上下文信息增强特征;最后提出了多通道池化模块,能够聚焦被检测物体的局部信息,提高伪装目标检测准确率.在CHAMELEON、CAMO以及COD10K数据集上的实验结果表明,与当前主流的伪装物体检测算法相比较,该方法生成的预测图更加清晰,伪装目标检测模型能取得更高精度. 展开更多
关键词 深度学习 伪装目标检测 视觉特征金字塔 卷积神经网络 特征融合
下载PDF
结合残差与双注意力机制的U-Net语音增强方法
6
作者 许春冬 王磊 +2 位作者 胡菁兰 闵源 徐锦武 《计算机工程与设计》 北大核心 2024年第11期3383-3389,共7页
针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注... 针对U-Net语音增强网络深层特征提取能力不足,以及编解码过程中特征信息丢失问题,提出一种结合残差与双注意力机制的DA-Res-Unet语音增强方法。将U-Net编解码部分设计为残差结构来深化网络,增强深层特征提取能力;在网络结构中构造双注意力机制,减少时频特征提取中的细节信息丢失;在网络中融入空洞空间金字塔池化结构,在低参数量情况下融合不同尺度上下文背景信息,提高模型特征捕获能力。实验结果表明,DA-Res-Unet网络模型在可见噪声测试集上的PESQ、STOI和LSD这3种评测指标取得了不同程度的提升,在未知噪声测试集上具备一定优势。 展开更多
关键词 语音增强 深度学习 残差网络 特征提取 编解码结构 注意力机制 空洞空间池化金字塔
下载PDF
基于深度迁移学习的复杂机场场景飞机目标检测方法 被引量:1
7
作者 钟聃 李铁虎 李诚 《光子学报》 EI CAS CSCD 北大核心 2024年第4期221-231,共11页
提出了一种改进的深度学习模型,旨在解决检测问题。首先基于迁移学习,微调预训练模型,提高了模型在有限的飞机数据集中的特征提取能力。其次,融入调整模块以增加深层特征图的感受野,提升模型的鲁棒性。引入特征金字塔网络,融合不同尺度... 提出了一种改进的深度学习模型,旨在解决检测问题。首先基于迁移学习,微调预训练模型,提高了模型在有限的飞机数据集中的特征提取能力。其次,融入调整模块以增加深层特征图的感受野,提升模型的鲁棒性。引入特征金字塔网络,融合不同尺度的特征信息,进一步增强多尺度特征提取能力。最后,优化了检测头,融合轻量化的分类和回归并行分支,平衡了目标检测的准确性和实时性。构建了易于拓展的Aeroplane数据集,并对所提方法进行了实验验证。结果表明,所提模型在单架飞机、相互遮挡的飞机和小飞机的检测中平均精度分别提高了4.9%、4.0%和4.4%。所提方法在不同环境下表现优于其他经典方法,包括各类遮挡和夜间、雾天等复杂场景,具有良好的场景鲁棒性。 展开更多
关键词 深度学习 飞机目标检测 迁移学习 机场场面 特征金字塔网络
下载PDF
融合不降维局部跨通道交互策略的双路径金字塔检测算法
8
作者 焦博文 王玉林 +3 位作者 王鹏 王洪昌 于奕轩 沈正坤 《计算机工程与应用》 CSCD 北大核心 2024年第12期91-100,共10页
针对道路障碍物目标检测任务中多尺度目标检测精度低,以及在不同场景下检测鲁棒性和泛化能力差等问题。改进算法基于传统特征金字塔网络,提出一种自上而下和自下而上结合的双路径特征金字塔网络模块,通过特征拼接和融合操作保留预测特... 针对道路障碍物目标检测任务中多尺度目标检测精度低,以及在不同场景下检测鲁棒性和泛化能力差等问题。改进算法基于传统特征金字塔网络,提出一种自上而下和自下而上结合的双路径特征金字塔网络模块,通过特征拼接和融合操作保留预测特征层中更多的浅层和深层次语义信息。在此基础上,提出一种空间和通道机制串联的注意力网络模块,通过采用不降维的局部跨通道交互策略,进一步提升网络模型检测性能。经实验验证,改进算法相较于原始算法目标检测准确率提升4.6个百分点;小目标检测准确率提升11.76个百分点;中目标检测准确率提升5.78个百分点;大目标检测准确率提升3.7个百分点。 展开更多
关键词 计算机视觉 目标检测 深度学习 特征金字塔网络 注意力机制
下载PDF
基于CB-Attention的JavaScript恶意混淆代码检测方法
9
作者 徐鑫 张志宁 +2 位作者 吕云山 李立 郑玉杰 《计算机工程与设计》 北大核心 2024年第8期2298-2305,共8页
当今JavaScript代码混淆方法日益多样,现有检测方法在对混淆代检测时会出现漏报和误报的情况,为解决该问题,提出一种基于CB-Attention的JavaScript恶意代码检测方法。由SDPCNN模型和BiLSTM+Attention模型构成,SDPCNN对短距离间的语义特... 当今JavaScript代码混淆方法日益多样,现有检测方法在对混淆代检测时会出现漏报和误报的情况,为解决该问题,提出一种基于CB-Attention的JavaScript恶意代码检测方法。由SDPCNN模型和BiLSTM+Attention模型构成,SDPCNN对短距离间的语义特征信息进行提取,BiLSTM+Attention获取JavaScript代码中长距离间的语义信息特征。为验证所提方法的有效性,将该方法与其它方法进行对比,对比结果表明,该方法具有较好的检测效果,F1-Score可达98.78%。 展开更多
关键词 JavaScript恶意代码 混淆代码 检测模型 增强深度金字塔卷积神经网络 注意力网络 双向长短时记忆网络 长距离特征信息 抽象语法树
下载PDF
SwinEA:融合边缘感知的医学图像分割网络 被引量:2
10
作者 叶晋豫 李娇 +2 位作者 邓红霞 张瑞欣 李海芳 《计算机工程与设计》 北大核心 2024年第4期1149-1156,共8页
基于卷积神经网络的方法在医学图像分割任务中取得了显著成果,但该方法固有的归纳偏置使其不能很好地学习全局和长距离的语义信息交互,而Transformer的优势是关注全局信息,两者可以优势互补。因此提出一种针对分割边缘利用Swin Transfor... 基于卷积神经网络的方法在医学图像分割任务中取得了显著成果,但该方法固有的归纳偏置使其不能很好地学习全局和长距离的语义信息交互,而Transformer的优势是关注全局信息,两者可以优势互补。因此提出一种针对分割边缘利用Swin Transformer融合边缘感知的医学图像分割网络。设计基于上下文金字塔的边缘感知模块,用于融合全局的多尺度的上下文信息,针对边缘和角落等局部特征,利用浅层深度主干的特征产生丰富的边缘特征,因此提出的边缘感知模块可以尽可能多地产生边缘特征。在腹部多器官分割任务和心脏分割数据集的实验结果表明,该方法在各项指标中都有所提高。 展开更多
关键词 医学图像分割 移动窗口变形器 多头自注意力 边缘感知模块 上下文金字塔 多尺度特征 深度学习网络
下载PDF
基于双分支特征提取和自适应胶囊网络的DGA域名检测方法
11
作者 杨宏宇 章涛 +2 位作者 张良 成翔 胡泽 《软件学报》 EI CSCD 北大核心 2024年第8期3626-3646,共21页
面向域名生成算法(domain generation algorithm,DGA)的域名检测方法普遍具有特征提取能力弱、特征信息压缩比高等特点,这导致特征信息丢失、特征结构破坏以及域名检测效果较差等诸多不足.针对上述问题,提出一种基于双分支特征提取和自... 面向域名生成算法(domain generation algorithm,DGA)的域名检测方法普遍具有特征提取能力弱、特征信息压缩比高等特点,这导致特征信息丢失、特征结构破坏以及域名检测效果较差等诸多不足.针对上述问题,提出一种基于双分支特征提取和自适应胶囊网络的DGA域名检测方法.首先,通过样本清洗和字典构建重构原始样本并生成重构样本集;其次,通过双分支特征提取网络处理重构样本,在其中,利用切片金字塔网络提取域名局部特征,利用Transformer提取域名全局特征,并利用轻量级注意力融合不同层次的域名特征;然后,利用自适应胶囊网络计算域名特征图的重要度系数,将域名文本特征转换为向量域名特征,并通过特征转移计算基于文本特征的域名分类概率;同时,利用多层感知机处理域名统计特征,以此计算基于统计特征的域名分类概率;最后,通过合并得到的两种不同视角的域名分类概率进行域名检测.大量的实验表明,所提方法在DGA域名检测以及DGA域名家族检测分类方面均取得了当前领先的检测效果.在DGA域名检测中,F1分数提升了0.76%-5.57%;在DGA域名家族检测分类中,F1分数(宏平均)提升了1.79%-3.68%. 展开更多
关键词 DGA域名检测 深度学习 双分支特征提取网络 切片金字塔网络 自适应胶囊网络
下载PDF
用于小麦多生长阶段倒伏边界精准检测的分层交互特征金字塔网络 被引量:1
12
作者 庞春晖 陈鹏 +6 位作者 夏懿 章军 王兵 邹岩 陈天娇 康辰瑞 梁栋 《智慧农业(中英文)》 CSCD 2024年第2期128-139,共12页
[目的/意义]传统的小麦倒伏检测方法需要人工进行田间观测和记录,这种方法存在主观、效率低、劳动强度大等问题,难以满足大规模的小麦倒伏检测的需求。基于深度学习的小麦倒伏检测技术虽已在一定程度上得到应用,但普遍局限于对小麦单一... [目的/意义]传统的小麦倒伏检测方法需要人工进行田间观测和记录,这种方法存在主观、效率低、劳动强度大等问题,难以满足大规模的小麦倒伏检测的需求。基于深度学习的小麦倒伏检测技术虽已在一定程度上得到应用,但普遍局限于对小麦单一发育阶段的倒伏识别,而倒伏可能发生在小麦生长的各个时期,不同时期倒伏特征变化复杂,这给模型特征捕捉能力带来考验。本研究旨在探索一种基于深度学习技术的多生育期小麦倒伏区域检测方法。[方法]用无人机采集小麦灌浆期、早熟期、晚熟期这三个关键生长阶段的RGB图像,通过数据增强等技术构建出多生育期小麦倒伏数据集。提出一种小麦倒伏提取模型Lodging2Former,该模型在Mask2Former的基础上加以改进,引入分层交互式特征金字塔网络(Hierarchical Interactive Feature Pyramid Network,HI-FPN),用于提高模型在复杂田间背景干扰下对于多个生长阶段小麦倒伏特征的捕捉能力。[结果和讨论]所提出的Lodg⁃ing2Former模型相较于现存的多种主流算法,如Mask R-CNN(Mask Region-Based Convolutional Neural Network)、SOLOv2(Segmenting Objects by Locations,Version 2)以及Mask2Former,在平均精度均值(mean Average Precision,mAP)上展现出显著优势。在阈值分别为0.5、0.75以及0.5~0.95的条件下,模型的mAP值分别达到了79.5%、40.2%和43.4%,相比Mask2Former模型,mAP性能提升了1.3%~4.3%。[结论]提出的HI-FPN网络可以有效利用图像中的上下文语义和细节信息,通过提取丰富的多尺度特征,增强了模型对小麦在不同生长阶段倒伏区域的检测能力,证实了HI-FPN在多生育期小麦倒伏检测中的应用潜力和价值。 展开更多
关键词 无人机 深度学习 小麦倒伏检测 特征金字塔网络 Mask2Former
下载PDF
基于改进YOLOv5s的鱼雷检测算法
13
作者 崔陈 甘文洋 朱大奇 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第1期35-41,79,共8页
针对目前深海鱼雷检测中存在检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5s的鱼雷检测算法。使用可分离视觉变换器(SepViT)模块来替换主干层网络最后一层中的C3模块,增强骨干网络与全局信息的联系以及鱼雷特征的提取,降低漏... 针对目前深海鱼雷检测中存在检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5s的鱼雷检测算法。使用可分离视觉变换器(SepViT)模块来替换主干层网络最后一层中的C3模块,增强骨干网络与全局信息的联系以及鱼雷特征的提取,降低漏检率和误检率。在YOLOv5s网络模型的主干层网络中引入ECA注意力机制,提高复杂的深海环境下检测模型对于鱼雷深层次关键特征的提取能力,同时避免了降维,以有效的方式捕捉跨通道的交互信息,以此来提高鱼雷检测模型的检测精度。将网络模型颈部层中的路径聚合网络(PANet)替换为双向特征金字塔网络(BiFPN),采用跨尺度连接去除路径聚合网络(PANet)中对特征融合贡献较小的节点,实现多尺度特征的快速融合,提高鱼雷检测模型的检测效率。实验结果表明:改进的YOLOv5s鱼雷检测算法的均值平均精度(mAP)达到了97.0%,较原来的YOLOv5s算法提高了3.7%,检测速度达83 FPS,有效地提高了深海鱼雷检测的精度和速度。 展开更多
关键词 鱼雷检测 YOLOv5s 深度学习 可分离视觉变换器 注意力机制 双向特征金字塔网络
下载PDF
基于LWKConv-DRSN-FPN的旋转机械故障诊断
14
作者 伍兴 李志伟 +1 位作者 宁文乐 郑照 《噪声与振动控制》 CSCD 北大核心 2024年第5期133-139,共7页
针对传统旋转机械故障诊断方法难以应对强噪声干扰以及诊断准确率较低的问题,提出一种Laplace小波核卷积层(Laplace Wavelet Kernel Convolutional Layer,LWKConv)、深度残差收缩网络(Deep Residual Shrinkage Networks,DRSN)和特征金... 针对传统旋转机械故障诊断方法难以应对强噪声干扰以及诊断准确率较低的问题,提出一种Laplace小波核卷积层(Laplace Wavelet Kernel Convolutional Layer,LWKConv)、深度残差收缩网络(Deep Residual Shrinkage Networks,DRSN)和特征金字塔网络(Feature Pyramid Networks,FPN)相结合的故障诊断方法。具体地,在DRSN模型结构基础上,构造LWKConv,通过更新尺度因子和平移因子,多尺度提取故障引起的突变冲击特征;引入FPN融合深层和浅层特征,提高模型对浅层细节信息的利用程度,实现对旋转机械的故障诊断。研究表明:所提的LWKConv-DRSN-FPN方法基于轴承和齿轮数据集的诊断准确率最高能达到100%,尤其在-4 dB强噪声干扰条件下的诊断准确率达到97.75%,能有效提取突变冲击特征,具有较好的通用性和抗强噪声干扰能力。 展开更多
关键词 故障诊断 旋转机械 Laplace小波核卷积层 深度残差收缩网络 特征金字塔网络
下载PDF
基于自适应全局定位算法的带钢表面缺陷检测
15
作者 王延舒 余建波 《自动化学报》 EI CAS CSCD 北大核心 2024年第8期1550-1564,共15页
针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题,提出了一种基于自适应全局定位网络(Adaptive global localization network,AGLNet)的深度学习缺陷检测算法.首先,引入一种残差网络(Residual network,ResN... 针对热轧带钢表面缺陷检测存在的智能化水平低、检测精度低和检测速度慢等问题,提出了一种基于自适应全局定位网络(Adaptive global localization network,AGLNet)的深度学习缺陷检测算法.首先,引入一种残差网络(Residual network,ResNet)与特征金字塔网络(Feature pyramid network,FPN)集成的特征提取结构,减少缺陷语义信息在层级传递间的消失;其次,提出基于TPE(Tree-structure Parzen estimation)的自适应树型候选框提取网络(Adaptive treestructure region proposal extraction network,AT-RPN),无需先验知识的积累,避免了人为调参的训练模式;最后,引入全局定位回归算法,以全局定位的模式在复杂的缺陷检测中实现缺陷更精确定位.本文实现一种快速、准确、更智能化、更适用于实际应用的热轧带钢表面缺陷的算法.实验结果表明,AGLNet在NEU-DET热轧带钢表面缺陷数据集上的检测速度保持在11.8帧/s,平均精度达到79.90%,优于目前其他深度学习带钢表面缺陷检测算法.另外,该算法还具备较强的泛化能力. 展开更多
关键词 表面缺陷检测 深度学习 特征金字塔网络 自适应树型候选框提取 全局定位
下载PDF
基于点云的自动驾驶下三维目标检测
16
作者 杨咏嘉 钟良琪 闫胜业 《计算机工程与设计》 北大核心 2024年第4期1093-1099,共7页
针对当前三维目标检测算法对行人、骑行人等小目标检测效果不佳的缺点,提出一种改进PV-RCNN的三维目标检测算法。改进关键点下采样方式,通过滤除背景及离群点提高关键点在目标上的命中率;设计多尺度区域建议网络,尺度匹配的特征图提高... 针对当前三维目标检测算法对行人、骑行人等小目标检测效果不佳的缺点,提出一种改进PV-RCNN的三维目标检测算法。改进关键点下采样方式,通过滤除背景及离群点提高关键点在目标上的命中率;设计多尺度区域建议网络,尺度匹配的特征图提高边界框的生成质量;使用加入方向感知的DIoU损失函数优化边界框的回归。实验结果表明,与基准网络相比,算法在KITTI测试集的车辆、行人和骑行人的mAP分别提高了0.77%、6.33%和2.05%,有效提高了网络性能。 展开更多
关键词 深度学习 三维目标检测 特征金字塔 原始点云 交并比损失函数 特征融合 点云下采样
下载PDF
面向多复杂场景环境的敞车车号辨识研究
17
作者 薛峰 于国丞 +3 位作者 李世杰 凌烈鹏 张峰峰 陈峰炜 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1162-1169,共8页
针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深... 针对现有敞车车号定位识别方法存在的环境适应性差、定位和识别精度低的问题,本文提出一种面向多种复杂环境下的敞车车号精准定位和识别的方法。搭建融合多尺度特征信息的敞车车号定位模型框架,在此基础上,融合多尺度金字塔特征进行深度可分离卷积的敞车车号特征提取网络设计。提出基于改进卷积循环神经网络的车号定位识别模型,主要针对识别网络模型结构进行设计。通过不同环境下采集的敞车车厢图片对本文提出的方法进行验证。结果表明:本文提出的车号定位方法的准确率为0.94,车号识别的准确率为0.97。 展开更多
关键词 车号定位 深度可分离卷积 特征提取 改进卷积循环神经网络 特征金字塔 字符识别 铁路货运 深度学习
下载PDF
基于时间特征细化网络的时空视频超分辨率研究
18
作者 姚晓娟 穆柯 +3 位作者 潘沛 杨紫伊 赵雨飞 朱永贵 《南通大学学报(自然科学版)》 CAS 2024年第3期10-22,共13页
时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶... 时空视频超分辨率(space-time video super-resolution,STVSR)通过时间和空间2个尺度提升视频的质量,从而实现在视频采集设备、传输或者存储有限的情况下依然能实时地呈现高分辨率和高帧率的视频,满足人们对超高清画质的追求。相比两阶段方法,一阶段方法实现的是特征层面而非像素层面的帧插值,其在推理速度和计算复杂度上都明显更胜一筹。一些现有的一阶段STVSR方法采用基于像素幻觉的特征插值,这幻化了像素,因此很难应对帧间快速运动物体的预测。为此,提出一种基于光流法的金字塔编码器-解码器网络来进行时间特征插值,实现快速的双向光流估计和更真实自然的纹理合成,在使得网络结构更高效的同时弥补了大运动对光流估计带来的不稳定性。另外,空间模块采用基于滑动窗口的局部传播和基于循环网络的双向传播来强化帧对齐,整个网络称为时间特征细化网络(temporal feature refinement netowrk,TFRnet)。为了进一步挖掘TFRnet的潜力,将空间超分辨率先于时间超分辨率(space-first),在几种广泛使用的数据基准和评估指标上的实验证明了所提出方法TFRnet-sf的出色性能,在总体峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)提升的同时,插入中间帧的PSNR和SSIM也得到提升,在一定程度上缓和了插入的中间帧与原有帧之间PSNR和SSIM差距过大的问题。 展开更多
关键词 时空视频超分辨率 金字塔编码器-解码器网络 时间特征插值 空-时超分策略 深度学习
下载PDF
基于YOLO的轻量化目标检测方法研究
19
作者 文磊 《机电产品开发与创新》 2024年第3期114-118,共5页
针对移动端目标检测算法需要模型参数量与计算量更少、推理速度更快和检测效果更好以及目标检测算法对于小目标误检、漏检及特征提取能力不足等问题,提出一种基于YOLOv5改进的轻量化目标检测算法。该算法使用轻量级网络MobileNetV2作为... 针对移动端目标检测算法需要模型参数量与计算量更少、推理速度更快和检测效果更好以及目标检测算法对于小目标误检、漏检及特征提取能力不足等问题,提出一种基于YOLOv5改进的轻量化目标检测算法。该算法使用轻量级网络MobileNetV2作为目标检测算法的骨干网络降低模型的参数量与计算量,通过使用深度可分离卷积结合大卷积核的思想降低网络的计算量与参数量,并提升了小目标的检测精度。使用GhostConv来替换部分普通卷积,进一步降低参数量与计算量.本文算法在VOC竞赛数据集,COCO竞赛数据集两份数据集上均进行了多次对比实验,结果表明本文算法相比于其他模型参数量更小、计算量更小、推理速度更快以及检测精度更高。 展开更多
关键词 轻量化 深度学习 特征金字塔网络(FPN) YOLOv5 大核卷积
下载PDF
基于改进型SSD算法的铁路货场异物侵限小目标检测研究
20
作者 李建国 陈敬涛 +1 位作者 张伟 李斌 《铁道通信信号》 2024年第7期57-62,共6页
为解决铁路货场异物侵限场景中小目标检测难度大、准确率不高、检测效果不佳的问题,提出基于特征金字塔网络的改进型单阶多框检测(SSD)算法。通过研究现阶段铁路货场业务管理现状、异物侵限场景及对应的检测技术,对小目标检测现存问题... 为解决铁路货场异物侵限场景中小目标检测难度大、准确率不高、检测效果不佳的问题,提出基于特征金字塔网络的改进型单阶多框检测(SSD)算法。通过研究现阶段铁路货场业务管理现状、异物侵限场景及对应的检测技术,对小目标检测现存问题进行归类总结;通过在SSD算法的检测网络部分增加不同特征层信息的金字塔网络结构,提高小目标检测效率。根据改进前后2种算法在铁路货场异物侵限场景的试验数据对比,得出改进型SSD算法推理阶段的检出精度更高,可有效提高小目标检测效率和准确率,为铁路货场智能化安全管控提供有力的技术支撑。 展开更多
关键词 深度学习 小目标检测算法 铁路货场 异物侵限 SSD算法 特征金字塔网络
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部