In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in th...In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in this paper we formulate the tracking problem into a regression model from measurements to target states.A tracking algorithm based on a modified deep feedforward neural network(MDFNN)is then proposed.In MDFNN,a filter layer is introduced to describe the temporal sequence relationship of the input measurement sequence,and the optimal measurement sequence size is analyzed.Simulations and field experimental data of the passive radar show that the accuracy of the proposed algorithm is better than those of extended Kalman filter(EKF),unscented Kalman filter(UKF),and recurrent neural network(RNN)based tracking methods under the considered scenarios.展开更多
The estimated ultimate recovery(EUR)of shale gas wells is influenced by many factors,and the accurate prediction still faces certain challenges.As an artificial intelligence algorithm,deep learning yields notable adva...The estimated ultimate recovery(EUR)of shale gas wells is influenced by many factors,and the accurate prediction still faces certain challenges.As an artificial intelligence algorithm,deep learning yields notable advantages in nonlinear regression.Therefore,it is feasible to predict the EUR of shale gas wells based on a deep-learning algorithm.In this paper,according to geological evaluation data,hydraulic fracturing data,production data and EUR evaluation results of 282 wells in the WY shale gas field,a deep-learning-based algorithm for EUR evaluation of shale gas wells was designed and realized.First,the existing EUR evaluation methods of shale gas wells and the deep feedforward neural network algorithm was systematically analyzed.Second,the technical process of a deep-learning-based algorithm for EUR prediction of shale gas wells was designed.Finally,by means of real data obtained from the WY shale gas field,several different cases were applied to testify the validity and accuracy of the proposed approach.The results show that the EUR prediction with high accuracy.In addition,the results are affected by the variety and number of input parameters,the network structure and hyperparameters.The proposed approach can be extended to other shale fields using the similar technic process.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61931015,62071335,and 61831009)the Natural Science Foundation of Hubei Province,China(No.2021CFA002)。
文摘In radar systems,target tracking errors are mainly from motion models and nonlinear measurements.When we evaluate a tracking algorithm,its tracking accuracy is the main criterion.To improve the tracking accuracy,in this paper we formulate the tracking problem into a regression model from measurements to target states.A tracking algorithm based on a modified deep feedforward neural network(MDFNN)is then proposed.In MDFNN,a filter layer is introduced to describe the temporal sequence relationship of the input measurement sequence,and the optimal measurement sequence size is analyzed.Simulations and field experimental data of the passive radar show that the accuracy of the proposed algorithm is better than those of extended Kalman filter(EKF),unscented Kalman filter(UKF),and recurrent neural network(RNN)based tracking methods under the considered scenarios.
基金supported by the funding of National Science and Technology Major Projects of China(2016ZX05037-006-005,2016ZX05037-006,2016ZX05035-004)。
文摘The estimated ultimate recovery(EUR)of shale gas wells is influenced by many factors,and the accurate prediction still faces certain challenges.As an artificial intelligence algorithm,deep learning yields notable advantages in nonlinear regression.Therefore,it is feasible to predict the EUR of shale gas wells based on a deep-learning algorithm.In this paper,according to geological evaluation data,hydraulic fracturing data,production data and EUR evaluation results of 282 wells in the WY shale gas field,a deep-learning-based algorithm for EUR evaluation of shale gas wells was designed and realized.First,the existing EUR evaluation methods of shale gas wells and the deep feedforward neural network algorithm was systematically analyzed.Second,the technical process of a deep-learning-based algorithm for EUR prediction of shale gas wells was designed.Finally,by means of real data obtained from the WY shale gas field,several different cases were applied to testify the validity and accuracy of the proposed approach.The results show that the EUR prediction with high accuracy.In addition,the results are affected by the variety and number of input parameters,the network structure and hyperparameters.The proposed approach can be extended to other shale fields using the similar technic process.