期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of mechanized deep placement of nitrogen fertilizer rate and type on rice yield and nitrogen use efficiency in Chuanxi Plain, China 被引量:3
1
作者 ZHU Cong-hua OUYANG Yu-yuan +4 位作者 DIAO You YU Jun-qi LUO Xi ZHENG Jia-guo LI Xu-yi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第2期581-592,共12页
This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It ... This paper investigates the yield and nitrogen use efficiency (NUE) of machine-transplanted rice cultivated using mechanized deep placement of N fertilizer in the rice–wheat rotation region of Chuanxi Plain,China.It provides theoretical support for N-saving and improves quality and production efficiency of machine-transplanted rice.Using a single-factor complete randomized block design in field experiments in 2018 and 2019,seven N-fertilization treatments were applied,with the fertilizer being surface broadcast and/or mechanically placed beside the seedlings at (5.5±0.5) cm soil depth when transplanting.The treatments were:N0,no N fertilizer;U1,180 kg N ha^(–1) as urea,surface broadcast manually before transplanting;U2,108 kg N ha^(–1) as urea,surface broadcast manually before transplanting,and 72 kg N ha^(–1) as urea surface broadcast manually on the 10th d after transplanting,which is not only the local common fertilization method,but also the reference treatment;UD,180 kg N ha^(–1) as urea,mechanically deep-placed when transplanting;M1,81.6 kg N ha^(–1) as urea and 38.4 kg N ha^(–1) as controlled-release urea (CRU),mechanically deep-placed when transplanting;M2,102 kg N ha^(–1) as urea and48 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting;M3,122.4 kg N ha^(–1) as urea and 57.6 kg N ha^(–1) as CRU,mechanically deep-placed when transplanting.The effects of the N fertilizer treatments on rice yield and NUE were consistent in the 2 yr.With a N application rate of 180 kg ha^(–1),compared with U2,the N recovery efficiency (NRE),N agronomic use efficiency (NAE) and yield under the UD treatment were 20.6,3.5 and 1.1% higher in 2018,and 4.6,1.7 and 1.2% higher in 2019,respectively.Compared with urea alone (U1,U2 or UD),the NRE,NAE and yield achieved by M3 (combined application of urea and controlled-release urea) were higher by 9.2–73.3%,18.6–61.5% and 6.5–16.5%(2018),and 22.2–65.2%,25.6–75.0% and 5.9–13.9%(2019),respectively.Compared with M3,the lower-N treatments M1 and M2 significantly increased NRE by 4.0–7.8% in 2018 and 3.1–4.3% in 2019,respectively.Compared with urea surface application (U1 or U2),the yield under the M2 treatment was higher by 4.3–12.9% in 2018 and 3.6–10.1% in 2019,respectively.Compared with U2,the NRE and NAE under the M2 treatment was higher by 36.9 and 36.3% in 2018,and 33.2 and 37.4% in 2019,mainly because of higher N uptake.There was no significant difference in the concentration of nitrate in the top 0–20 cm soil under U1,U2 and M2 treatments during the full heading and maturity stages.During the full heading stage,U2 produced the highest concentration of nitrite in 0–20 cm and 20–40 cm soil among the N fertilizer treatments.In conclusion,mechanized deep placement of mixed urea and controlled-release urea (M2) at transplanting is a highly-efficient cultivation technology that enables increased yield of machine-transplanted rice and improved NUE,while reducing the amount of N-fertilization applied. 展开更多
关键词 RICE N-fertilization rate controlled release urea side deep fertilization YIELD nitrogen use efficiency
下载PDF
Structure optimization of cam executive component and analysis of precisely applying deep-fertilization liquid fertilizer 被引量:5
2
作者 Wenqi Zhou Jinwu Wang Han Tang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第4期104-109,共6页
Since there are some problems in the previous cam of deep-fertilization liquid fertilizer applicator,such as poor precision and low-fertilization performance,a method of the contour line of a cam was proposed based on... Since there are some problems in the previous cam of deep-fertilization liquid fertilizer applicator,such as poor precision and low-fertilization performance,a method of the contour line of a cam was proposed based on Matlab GUI development platform.Bernoulli’equation between the liquid fertilizer and the pressure valve of the fertilizer-spraying needle was founded.Moreover,the motion angles of a rise travel and return travel were corrected and the corresponding parameters of the contour line of the cam were obtained.Equations of cam moving from rise travel to return travel were derived according to the simple harmonic motion.In addition,3D model of cam was established by applying the Pro/E software and the rationality of the cam design was verified.The static analysis of the cam was carried out under working conditions and the corresponding dynamics analysis was performed based on D’Alembert’s principle.And then relationships between the binding force and the drag torque were obtained.A bench test indicates that when the pressure of a hydraulic pump is 0.5 MPa and the velocity of a output shaft is 50 r/min,the average consumption of the fertilizer is 19.7 mL for each measurement,which meets the corresponding agronomic requirement,i.e.20 mL.When the rotation angle of the cam is 8.6°and the rise displacement of a plunger is 0.84 mm,the mouth of the fertilizer-spraying needle sprayed liquid fertilizer as soon as it got into the soil and stopped spraying as soon as it got out of the soil.The results show that the designed contour line of the cam meets the requirement,that is,the mouth of the fertilizer-spraying needle should spray liquid fertilizer as soon as it gets into the soil and stop spraying as soon as it gets out of the soil,which meets the agronomic requirements,that is,fertilizer should be sprayed deeply and precisely.And this study lays a theoretical foundation for designing the cam of intermittent type distributor and provides relevant parameters. 展开更多
关键词 liquid fertilizer applicator CAM precision and deep fertilization Bernoulli’equation D’Alembert’s principle Matlab test optimization
原文传递
Design and experiment of centralized pneumatic deep precision fertilization device for rice transplanter 被引量:4
3
作者 Xiantao Zha Guozhong Zhang +3 位作者 Shijie Zhang Qunxi Hou Yang Wang Yong Zhou 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第6期109-117,共9页
To improve the precision of deep fertilization of paddy fields,a six-row centralized pneumatic deep precision fertilization device for a rice transplanter was designed.This device included a spiral fertilizer distribu... To improve the precision of deep fertilization of paddy fields,a six-row centralized pneumatic deep precision fertilization device for a rice transplanter was designed.This device included a spiral fertilizer distribution system,centralized pneumatic fertilizer delivery system,an opener system,and a fertilization control system.The centralized airflow distribution method was used in the fertilizer delivery system to ensure that the airflow in each fertilizer pipe was evenly distributed.The rotational speeds of the power take-off(PTO)and fertilizer shaft were measured synchronously using photoelectric sensors and matched proportionately in real-time using PID closed-loop control algorithms to achieve precise fertilization rates at each working speed of the rice transplanter.There were two key considerations in the design of the control system to ensure precise fertilization.Firstly,a photoelectric sensor was used to measure the speed of the PTO;the high rotational speed of the PTO could provide a high signal frequency and improve the precision of the measurement of the transplanter’s working speed.Secondly,the fertilizer shaft speed measurement subprogram was set to sleep for a short period to reduce the vibration caused by the engine.During the tests of pneumatic fertilizer delivery system,single-factor tests on airflow distribution methods were conducted.The results showed that the coefficient of variation of the airflow speed for the centralized airflow distribution method was 1.67%,which was the least among the coefficients of the three distribution methods.In the bench tests,the rotational speeds of the fertilizer shaft were set at 10 r/min,20 r/min,30 r/min,and 40 r/min.The maximum coefficient of variation of the fertilization consistency in different rows was 1.49%at the rotational speed of 20 r/min.The maximum coefficient of variation of the fertilization stability was 2.86%at the rotational speed of 40 r/min,while the average fertilizer amount per lap for each distributor was 26.25 g/r.The results of the dynamic fertilization tests showed that the maximum relative error of the fertilizer distribution amount was 2.00%when the target fertilizer rates were 20,30,and 40 kg/667 m2.The results of the field tests showed that the average relative error of the fertilization amount was 3.53%,which satisfies the design standard.This research provides a reference for optimizing pneumatic fertilizer delivery systems and improving fertilization control systems and other pneumatic precision fertilizer application devices. 展开更多
关键词 agricultural machinery deep precision fertilization PNEUMATIC variable rate TRANSPLANTER vibration elimination
原文传递
Effects of deep placement of fertilizer on periphytic biofilm development and nitrogen cycling in paddy systems 被引量:3
4
作者 Yanhui ZHAO Xiong XIONG Chenxi WU 《Pedosphere》 SCIE CAS CSCD 2021年第1期125-133,共9页
Periphytic biofilms are commonly presented at the water-soil interface in paddy fields. Different fertilization methods can affect the concentration and distribution of nutrients in paddy fields and thus affect the de... Periphytic biofilms are commonly presented at the water-soil interface in paddy fields. Different fertilization methods can affect the concentration and distribution of nutrients in paddy fields and thus affect the development of periphytic biofilms. In this study, the roles of periphytic biofilms in nitrogen(N) cycling in paddy systems and how they are affected by different fertilization methods were studied using microcosm experiments. Microcosms were prepared using soil samples from a paddy field and treated with surface and deep fertilization under light and dark conditions. Surface fertilization under light condition promoted the development of periphytic biofilms, while deep fertilization under dark condition inhibited their development. The development of periphytic biofilms increased the pH and dissolved oxygen levels in the overlying water. Surface fertilization resulted in high N concentrations in the overlying water and the topsoil layers, which enhanced NH3 volatilization and nitrification-denitrification but inhibited N fixation. The development of periphytic biofilms reduced NH3 volatilization loss but increased nitrification-denitrification loss and the overall N loss in the paddy system. The results from this work suggest that the presence of periphytic biofilms in paddy fields could increase N loss by 3.10%–7.11%. Deep fertilization is an effective method to retard the development of periphytic biofilms in the paddy system and can potentially increase the overall N use efficiency. 展开更多
关键词 deep fertilization denitrification potential N loss N use efficiency NH3 volatilization paddy field
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部