期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs
1
作者 Fan Yang Honggang Mi 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2637-2656,共20页
The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mec... The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mechanism of proppant in deep coal reservoir is not clear at present.To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs,an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted.The study systematically analyzed the impact of various fracture geometries,proppant types and fracturingfluid viscosities on proppant distribution.Furthermore,the study compared the outcomes of dynamic proppant transport experiments with simulation results.The results show that the numerical simulation is consistent with the results of the proppant dynamic sand-carrying experiment.Under the conditions of low viscosity and large pumping-rate,a high ratio of 40/70 mesh proppant can facilitate the movement of the proppant to the depths of fractures at all levels.The technical goal is to create comprehensive fracture support within intricate trapezoidal fractures in deep coal and rock reservoirs without inducing sand plugging.The sand ratio is controlled at 15%–20%,with a proppant combination ratio of 40/70:30/50:20/40=6:3:1.Proppant pumping operations can effectively address the issue of poor support in complex fractures in deep coal formations.The research results have been successfully applied to the development of deep coalbed methane in the Linxing-Shenfu block,Ordos Basin. 展开更多
关键词 deep coal fracture reticular fracture proppant density fracture conductivity proppant transportation
下载PDF
Excavation-induced deep hard rock fracturing:Methodology and applications 被引量:14
2
作者 Xia-Ting Feng Cheng-Xiang Yang +4 位作者 Rui Kong Jun Zhao Yangyi Zhou Zhibin Yao Lei Hu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期1-34,共34页
To analyze and predict the mechanical behaviors of deep hard rocks,some key issues concerning rock fracturing mechanics for deep hard rock excavations are discussed.First,a series of apparatuses and methods have been ... To analyze and predict the mechanical behaviors of deep hard rocks,some key issues concerning rock fracturing mechanics for deep hard rock excavations are discussed.First,a series of apparatuses and methods have been developed to test the mechanical properties and fracturing behaviors of hard rocks under high true triaxial stress paths.Evolution mechanisms of stress-induced disasters in deep hard rock excavations,such as spalling,deep cracking,massive roof collapse,large deformation and rockbursts,have been recognized.The analytical theory for the fracturing process of hard rock masses,including the three-dimensional failure criterion,stress-induced mechanical model,fracturing degree index,energy release index and numerical method,has been established.The cracking-restraint method is developed for mitigating or controlling rock spalling,deep cracking and massive collapse of deep hard rocks.An energy-controlled method is also proposed for the prevention of rockbursts.Finally,two typical cases are used to illustrate the application of the proposed methodology in the Baihetan caverns and Bayu tunnels of China. 展开更多
关键词 SPALLING deep cracking Large deformation Rockbursts Excavation-induced deep hard rock fracturing Cracking-restraint method Energy-controlled method
下载PDF
Theory and application of rock burst prevention using deep hole high pressure hydraulic fracturing 被引量:3
3
作者 Shan-Kun ZHAO Jun LIU +3 位作者 Xiang-Zhi WEI Chuan-Hong DING Yu-Lei LV Gang-Feng LI 《Journal of Coal Science & Engineering(China)》 2013年第2期136-142,共7页
In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer u... In order to analyze the mechanism of deep hole high pressure hydraulic fracturing, nonlinear dynamic theory, damage mechanics, elastic-plastic mechanics are used, and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software. In addition, the effects of rock burst control are tested using multiple methods, either in the stress field or in the energy field. The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas, the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction. High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure, while also weakening the physical and mechanical properties of coal and rock. Therefore the impact of high stress concentration in hazardous areas will level off, which has an effect on rock burst prevention and control in the region. 展开更多
关键词 rock burst deep hole high pressure hydraulic fracturing seepage-stress coupling models stress concentration factor
下载PDF
Geothermal data analysis at the high-temperature hydrothermal area in Western Sichuan 被引量:17
4
作者 ZHANG Jian LI WuYang +4 位作者 TANG XianChun TIAN Jiao WANG YingChun GUO Qi PANG ZhongHe 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第8期1507-1521,共15页
The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. ... The western Sichuan hydrothermal area is located at the northeastern margin of the eastern syntaxis of the Qinghai-Tibet Plateau, which is also the eastern end of the Mediterranean-Himalayan geothermal activity zone. There are 248 warm or hot springs in this area, and 11 have temperatures beyond the local boiling temperature. Most of these hot springs are distributed along the Jinshajiang, Dege-Xiangcheng, Ganzi-Litang, and Xianshuihe faults, forming a NW-SE hydrothermal belt. A geothermal analysis of this high-temperature hydrothermal area is an important basis for understanding the deep geodynamic process of the eastern syntaxis of the Qinghai-Tibet Plateau. In addition, this study offers an a priori view to utilize geothermal resources, which is important in both scientific research and application. We use gravity, magnetic, seismic, and helium isotope data to analyze the crust-mantle heat flow ratio and deep geothermal structure. The results show that the background terrestrial heat flow descends from southwest to northeast. The crustal heat ratio is not more than 60%. The high temperature hydrothermal active is related to crustal dynamics processes. Along the Batang-Litang-Kangding line, the Moho depth increases eastward, which is consistent with the changing Qc/Qm(crustal/mantle heat flow) ratio trend. The geoid in the hydrothermal zone is 4–6 km higher than the surroundings, forming a local "platform". The NW-SE striking local tensile stress zone and uplift structure in the upper and middle crust corresponds with the surface hydrothermal active zone. There is an average Curie Point Depth(CPD) of 19.5–22.5 km in Batang, Litang, and Kangding. The local shear-wave(S-wave) velocity is relatively low in the middle and lower crust. The S-wave shows a low velocity trap(Vs<3.2 km s.1) at 15–30 km, which is considered a high-temperature partial melting magma, the crustal source of the hydrothermal active zone. We conclude that the hydrothermal system in this area can be divided into Batang-type and Kangding-type, both of which rely on a crustal heating cycle of atmospheric precipitation and surface water along the fracture zone. The heat is derived from the middle and lower crust: groundwater penetrates the deep faults bringing geothermal energy back to the surface and forming high-temperature springs. 展开更多
关键词 Western Sichuan Plateau Fracture zone and thermally conductive structure deep thermal structure Heat flow estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部