The 4.45 m-thick pure ice lens have been discovered firstly at depth from 19.81 -24.26 m in the bore No.6, which locates in north bank of the Ngoring Lake. In source region of the Huanghe (Yellow) River, 14C dating, X...The 4.45 m-thick pure ice lens have been discovered firstly at depth from 19.81 -24.26 m in the bore No.6, which locates in north bank of the Ngoring Lake. In source region of the Huanghe (Yellow) River, 14C dating, X -ray diffraction, pollen analysis, micropalaeontology, chemical components, environmental isotope 2H, 3H, 18O and freezing point of the ice and water samples from the bore have been tested and microorganism in the ice have been also appraised with microscope. Combined with the research on geomorphy and Quaternary around the lake, the ice lens are determined as a kind of deep-buried lake ice, formed in 35,030-45,209 yr.B.P., and annual mean air temperature was about -10℃ during that time.展开更多
对湖泊总磷的变化预测和来源识别对水资源调度和流域生态治理有着重要的意义,然而复杂的生化反应和水动力条件导致的非平稳性给湖泊总磷浓度的准确预测带来极大的困难。为克服这一挑战,本文引入了基于加权回归的季节趋势分解(seasonal a...对湖泊总磷的变化预测和来源识别对水资源调度和流域生态治理有着重要的意义,然而复杂的生化反应和水动力条件导致的非平稳性给湖泊总磷浓度的准确预测带来极大的困难。为克服这一挑战,本文引入了基于加权回归的季节趋势分解(seasonal and trend decomposition using Loess,STL)技术和夏普利加法(SHapley additive exPlanations,SHAP)结合长短期记忆网络(long short-term memory neural network,LSTM)和门控循环单元(gated recurrent unit,GRU)构建了一个可解释的预测框架,以增强对湖泊总磷浓度演变的预测并提高其可解释性。研究表明:(1)在骆马湖总磷浓度的预测中,该框架拥有较好的预报精度(R^(2)=0.878),优于LSTM和卷积长短期记忆模型(convolutional neural networks and long short term memory network,CNN-LSTM)。当预测时间步长增加到8 h时,该框架有效提高了总磷浓度的预测精度,平均相对误差和均方根误差分别降低了47.1%和33.3%。从预测趋势来看,骆马湖在汛期的总磷平均浓度为0.158 mg/L,相较于非汛期的平均浓度,增加了202.1%。(2)运河来水是骆马湖总磷浓度最重要的影响因素,贡献权重为60.0%,并且不同断面(三湾、三场)的污染源受水动力、气象等因素的影响存在显著的时空差异。本文凸显了神经网络模型在预警水体污染方面的可实施性,并且为提高传统神经网络的学习能力和可解释性的开发与验证提供了重要方向。展开更多
An integrated satellite precipitation estimation dataset, namely, the Climate Prediction Center morphing method (CMORPH), was used to analyze precipitation regimes across Equatorial Africa between 3<span style=&quo...An integrated satellite precipitation estimation dataset, namely, the Climate Prediction Center morphing method (CMORPH), was used to analyze precipitation regimes across Equatorial Africa between 3<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">S - 1</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">N and 24</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E - 42</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E from 2000 to 2014. This region includes the Rift Valley, part of the Congo Forest, and the Lake Victoria (LV) basin, the second largest lake in the area of the world. Hovm<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">ö</span></span>ller diagrams were obtained for all organized convective systems to estimate their spans, duration, and phase speeds. The analysis included 33,189 episodes of westward propagating convective systems. Within the study area, lake and land breezes tend to trigger convection and precipitation over LV as well as mountain-valley circulation trigger thunderstorms over the mountains east of LV and western Rift Valley. The statistics of convective systems streaks on longitude-time diagrams were obtained for yearly frequencies of starting and ending longitudes and times among other morphologic variables. Results indicate organized precipitation episodes tend to move westward across Rift valley and Congo forest with an average phase speed of 10.3 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. More than 50% of them are triggered over LV and propagate more than 600 km at an average phase speed of 12.1 m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup><span style="font-family:Verdana;"><span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;white-space:normal;"></span></span><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">. These convective systems tend to produce high rainfall rates hundreds of kilometers away into the Congo Forest. Half of all episodes of organized convection analyzed have phase speeds between 8 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> and 16 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">, lasting 8 hr to 16 hr. Most precipitating systems start east of LV and west of Rift Valley in the afternoon to early morning and propagates less than 400 km. Finally, hourly precipitation accumulation and lightning density analysis indicate three preferable regions for convective initiation: 1) The mountain range east of LV;2) Midwest of LV, and;3) The Congo Forest mountain range.</span></span></span></span>展开更多
1 Introduction Many of the stratified lakes are characterized by the presence of large populations of cryptomonads in their chemocline zones(Reynolds,1992;Gervais et al,2003;Pedro’s-Alio’et al.,1995).These populatio...1 Introduction Many of the stratified lakes are characterized by the presence of large populations of cryptomonads in their chemocline zones(Reynolds,1992;Gervais et al,2003;Pedro’s-Alio’et al.,1995).These populations are adapted to low light intensity and high sulfide concentration;they have a mixotrophic ability and form the so-called"deep chlorophyll maxima"(Gervais,1998;Marsha"and Laybourn-Parry,2002).A similar Cryptomonas sp.展开更多
文摘The 4.45 m-thick pure ice lens have been discovered firstly at depth from 19.81 -24.26 m in the bore No.6, which locates in north bank of the Ngoring Lake. In source region of the Huanghe (Yellow) River, 14C dating, X -ray diffraction, pollen analysis, micropalaeontology, chemical components, environmental isotope 2H, 3H, 18O and freezing point of the ice and water samples from the bore have been tested and microorganism in the ice have been also appraised with microscope. Combined with the research on geomorphy and Quaternary around the lake, the ice lens are determined as a kind of deep-buried lake ice, formed in 35,030-45,209 yr.B.P., and annual mean air temperature was about -10℃ during that time.
文摘对湖泊总磷的变化预测和来源识别对水资源调度和流域生态治理有着重要的意义,然而复杂的生化反应和水动力条件导致的非平稳性给湖泊总磷浓度的准确预测带来极大的困难。为克服这一挑战,本文引入了基于加权回归的季节趋势分解(seasonal and trend decomposition using Loess,STL)技术和夏普利加法(SHapley additive exPlanations,SHAP)结合长短期记忆网络(long short-term memory neural network,LSTM)和门控循环单元(gated recurrent unit,GRU)构建了一个可解释的预测框架,以增强对湖泊总磷浓度演变的预测并提高其可解释性。研究表明:(1)在骆马湖总磷浓度的预测中,该框架拥有较好的预报精度(R^(2)=0.878),优于LSTM和卷积长短期记忆模型(convolutional neural networks and long short term memory network,CNN-LSTM)。当预测时间步长增加到8 h时,该框架有效提高了总磷浓度的预测精度,平均相对误差和均方根误差分别降低了47.1%和33.3%。从预测趋势来看,骆马湖在汛期的总磷平均浓度为0.158 mg/L,相较于非汛期的平均浓度,增加了202.1%。(2)运河来水是骆马湖总磷浓度最重要的影响因素,贡献权重为60.0%,并且不同断面(三湾、三场)的污染源受水动力、气象等因素的影响存在显著的时空差异。本文凸显了神经网络模型在预警水体污染方面的可实施性,并且为提高传统神经网络的学习能力和可解释性的开发与验证提供了重要方向。
文摘An integrated satellite precipitation estimation dataset, namely, the Climate Prediction Center morphing method (CMORPH), was used to analyze precipitation regimes across Equatorial Africa between 3<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">S - 1</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">N and 24</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E - 42</span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span></span><span style="font-family:Verdana;">E from 2000 to 2014. This region includes the Rift Valley, part of the Congo Forest, and the Lake Victoria (LV) basin, the second largest lake in the area of the world. Hovm<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">ö</span></span>ller diagrams were obtained for all organized convective systems to estimate their spans, duration, and phase speeds. The analysis included 33,189 episodes of westward propagating convective systems. Within the study area, lake and land breezes tend to trigger convection and precipitation over LV as well as mountain-valley circulation trigger thunderstorms over the mountains east of LV and western Rift Valley. The statistics of convective systems streaks on longitude-time diagrams were obtained for yearly frequencies of starting and ending longitudes and times among other morphologic variables. Results indicate organized precipitation episodes tend to move westward across Rift valley and Congo forest with an average phase speed of 10.3 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">. More than 50% of them are triggered over LV and propagate more than 600 km at an average phase speed of 12.1 m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup><span style="font-family:Verdana;"><span style="white-space:normal;color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span><span style="font-family:Verdana;white-space:normal;"></span></span><span style="font-family:Verdana;">1</span></sup><span style="font-family:Verdana;">. These convective systems tend to produce high rainfall rates hundreds of kilometers away into the Congo Forest. Half of all episodes of organized convection analyzed have phase speeds between 8 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;"> and 16 <span style="white-space:normal;font-family:Verdana;">m<span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#f7f7f7;"="">·</span>s</span><sup style="white-space:normal;"><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;background-color:#f7f7f7;"=""><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">-</span></span></span><span style="font-family:Verdana;">1</span></sup></span><sup><span style="font-family:Verdana;"></span><span style="font-family:Verdana;"></span></sup><span style="font-family:Verdana;">, lasting 8 hr to 16 hr. Most precipitating systems start east of LV and west of Rift Valley in the afternoon to early morning and propagates less than 400 km. Finally, hourly precipitation accumulation and lightning density analysis indicate three preferable regions for convective initiation: 1) The mountain range east of LV;2) Midwest of LV, and;3) The Congo Forest mountain range.</span></span></span></span>
基金supported by Russian Foundation for Basic Research (RFBR) No. 13-04-01514Integrative Project of Siberian Branch of Russian Academy of Sciences No. 56
文摘1 Introduction Many of the stratified lakes are characterized by the presence of large populations of cryptomonads in their chemocline zones(Reynolds,1992;Gervais et al,2003;Pedro’s-Alio’et al.,1995).These populations are adapted to low light intensity and high sulfide concentration;they have a mixotrophic ability and form the so-called"deep chlorophyll maxima"(Gervais,1998;Marsha"and Laybourn-Parry,2002).A similar Cryptomonas sp.