This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure c...This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively.展开更多
The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing f...The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing future hazards to improve seismic safety.Seismic fragility analysis can assist the resilience assessment under different levels of seismic intensity.However,such an analysis is computationally intensive,especially when considering various random factors.The present paper implemented the deep learning neural networks that are integrated into the performance-based earthquake engineering framework to predict fragility functions and associated resilience index of cable-stayed bridges under seismic hazards to improve the computational efficiency while having sufficient accuracy.In the proposed framework,the Latin hypercube sampling was improved with additional uniformity to enhance the training process of the neural network.The well-trained neural network was then applied in a probabilistic simulation process to derive different component fragilities of the cable-stayed bridge.The estimated fragility functions were combined with the Monte Carlo simulations to predict system resilience.The proposed integrated framework in this study was demonstrated on an existing single-pylon cable-stayed bridge in China.Results reveal that this integrated framework yields accurate predictions of fragility functions for the cable-stayed bridge and has reasonable accuracy compared with the conventional methods.展开更多
Flash floods are one of the most dangerous natural disasters,especially in hilly terrain,causing loss of life,property,and infrastructures and sudden disruption of traffic.These types of floods are mostly associated w...Flash floods are one of the most dangerous natural disasters,especially in hilly terrain,causing loss of life,property,and infrastructures and sudden disruption of traffic.These types of floods are mostly associated with landslides and erosion of roads within a short time.Most of Vietnamis hilly and mountainous;thus,the problem due to flash flood is severe and requires systematic studies to correctly identify flood susceptible areas for proper landuse planning and traffic management.In this study,three Machine Learning(ML)methods namely Deep Learning Neural Network(DL),Correlation-based FeatureWeighted Naive Bayes(CFWNB),and Adaboost(AB-CFWNB)were used for the development of flash flood susceptibility maps for hilly road section(115 km length)of National Highway(NH)-6 inHoa Binh province,Vietnam.In the proposedmodels,88 past flash flood events were used together with 14 flash floods affecting topographical and geo-environmental factors.The performance of themodels was evaluated using standard statisticalmeasures including Receiver Operating Characteristic(ROC)Curve,Area Under Curve(AUC)and Root Mean Square Error(RMSE).The results revealed that all the models performed well(AUC>0.80)in predicting flash flood susceptibility zones,but the performance of the DL model is the best(AUC:0.972,RMSE:0.352).Therefore,the DL model can be applied to develop an accurate flash flood susceptibility map of hilly terrain which can be used for proper planning and designing of the highways and other infrastructure facilities besides landuse management of the area.展开更多
With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of...With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of the network traffic data and access points.Recently,researchers have suggested deep learning(DL)algorithms to define intrusion features through training empirical data and learning anomaly patterns of attacks.However,due to the high dynamics and imbalanced nature of the data,the existing DL classifiers are not completely effective at distinguishing between abnormal and normal behavior line connections for modern networks.Therefore,it is important to design a self-adaptive model for an intrusion detection system(IDS)to improve the detection of attacks.Consequently,in this paper,a novel hybrid weighted deep belief network(HW-DBN)algorithm is proposed for building an efficient and reliable IDS(DeepIoT.IDS)model to detect existing and novel cyberattacks.The HW-DBN algorithm integrates an improved Gaussian–Bernoulli restricted Boltzmann machine(Deep GB-RBM)feature learning operator with a weighted deep neural networks(WDNN)classifier.The CICIDS2017 dataset is selected to evaluate the DeepIoT.IDS model as it contains multiple types of attacks,complex data patterns,noise values,and imbalanced classes.We have compared the performance of the DeepIoT.IDS model with three recent models.The results show the DeepIoT.IDS model outperforms the three other models by achieving a higher detection accuracy of 99.38%and 99.99%for web attack and bot attack scenarios,respectively.Furthermore,it can detect the occurrence of low-frequency attacks that are undetectable by other models.展开更多
Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids ...Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.展开更多
Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil...Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements.展开更多
This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases of deep neural networks (DNN) for forecasting the solar power genera...This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases of deep neural networks (DNN) for forecasting the solar power generation. The study employs a Feed Forward Neural Network (FFNN) to forecast AC power output using real solar power plant measurements spanning a 34-day period, recorded at 15-minute intervals. The intricate nonlinear relationship between solar irradiation, ambient temperature, and module temperature is captured for accurate prediction. Additionally, the paper conducts a comprehensive comparison with established algorithms, including Differential Evolution (DE-DNN), Barnacles Mating Optimizer (BMO-DNN), Particle Swarm Optimization (PSO-DNN), Harmony Search Algorithm (HSA-DNN), DNN with Adaptive Moment Estimation optimizer (ADAM) and Nonlinear AutoRegressive with eXogenous inputs (NARX). The experimental results distinctly highlight the exceptional performance of EMA-DNN by attaining the lowest Root Mean Squared Error (RMSE) during testing. This contribution not only advances solar power forecasting methodologies but also underscores the potential of merging metaheuristic algorithms with contemporary neural networks for improved accuracy and reliability.展开更多
We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines m...We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.展开更多
Distributed denial-of-service(DDoS)attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks.Furthermore,the enormous number of connected devices makes it d...Distributed denial-of-service(DDoS)attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks.Furthermore,the enormous number of connected devices makes it difficult to operate such a network effectively.Software defined networks(SDN)are networks that are managed through a centralized control system,according to researchers.This controller is the brain of any SDN,composing the forwarding table of all data plane network switches.Despite the advantages of SDN controllers,DDoS attacks are easier to perpetrate than on traditional networks.Because the controller is a single point of failure,if it fails,the entire network will fail.This paper offers a Hybrid Deep Learning Intrusion Detection and Prevention(HDLIDP)framework,which blends signature-based and deep learning neural networks to detect and prevent intrusions.This framework improves detection accuracy while addressing all of the aforementioned problems.To validate the framework,experiments are done on both traditional and SDN datasets;the findings demonstrate a significant improvement in classification accuracy.展开更多
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base...The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.展开更多
In this work,we constructed a neural network proxy model(NNPM)to estimate the hydrodynamic resistance in the ship hull structure design process,which is based on the hydrodynamic load data obtained from both the poten...In this work,we constructed a neural network proxy model(NNPM)to estimate the hydrodynamic resistance in the ship hull structure design process,which is based on the hydrodynamic load data obtained from both the potential flow method(PFM)and the viscous flow method(VFM).Here the PFM dataset is applied for the tuning,pre-training,and the VFM dataset is applied for the fine-training.By adopting the PFM and VFM datasets simultaneously,we aim to construct an NNPM to achieve the high-accuracy prediction on hydrodynamic load on ship hull structures exerted from the viscous flow,while ensuring a moderate data-acquiring workload.The high accuracy prediction on hydrodynamic loads and the relatively low dataset establishment cost of the NNPM developed demonstrated the effectiveness and feasibility of hybrid dataset based NNPM achieving a high precision prediction of hydrodynamic loads on ship hull structures.The successful construction of the high precision hydrodynamic prediction NNPM advances the artificial intelligence-assisted design(AIAD)technology for various marine structures.展开更多
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of...Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach.展开更多
Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent...Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.展开更多
With the development of Internet, people are more likely to post and propagate opinions online. Sentiment analysis is then becoming an important challenge to under- stand the polarity beneath these comments. Currently...With the development of Internet, people are more likely to post and propagate opinions online. Sentiment analysis is then becoming an important challenge to under- stand the polarity beneath these comments. Currently a lot of approaches from natural language processing's perspec- tive have been employed to conduct this task. The widely used ones include bag-of-words and semantic oriented analy- sis methods. In this research, we further investigate the struc- tural information among words, phrases and sentences within the comments to conduct the sentiment analysis. The idea is inspired by the fact that the structural information is play- ing important role in identifying the overall statement's po- larity. As a result a novel sentiment analysis model is pro- posed based on recurrent neural network, which takes the par- tial document as input and then the next parts to predict the sentiment label distribution rather than the next word. The proposed method learns words representation simultaneously the sentiment distribution. Experimental studies have been conducted on commonly used datasets and the results have shown its promising potential.展开更多
A courtyard is an architectural design element which is often known as microclimate modifiers and is responsible to increase the indoor occupant comfort in traditional architecture. The aim of this study is to conduct...A courtyard is an architectural design element which is often known as microclimate modifiers and is responsible to increase the indoor occupant comfort in traditional architecture. The aim of this study is to conduct a parametric evaluation of courtyard design variants in a residential building of different climates with a focus on indoor thermal comfort and utility costs. A brute-force approach is applied to generate a wide range of design alternatives and the simulation workflow is conducted by Grasshopper together with the environmental plugins Ladybug and Honeybee. The main study objective is the evaluation of the occupant thermal comfort in an air-conditioned residential building, energy load, and cost analysis, derived from different design variables including courtyard geometry, window-to-wall ratio, envelope materials, heating, and cooling set-point dead-bands, and building geographical location. Furthermore, a Deep Learning model is developed using the inputs and outputs of the simulation and analysis to transform the outcomes into the algorithmic and tangible environment feasible for predictive applications. The results suggest that regarding the thermal loads, costs, and indoor thermal comfort index (PMV), there are high correlations between the outdoor weather variation and dead-band ranges, while in extreme climates such as Singapore, courtyard spaces might not be efficient enough as expected. Finally, the highly accurate deep learning model is also developed, delivering superior predictive capabilities for the thermal comfort and utility costs of the courtyard designs.展开更多
The global growth of the Internet and the rapid expansion of social networks such as Facebook make multilingual sentiment analysis of social media content very necessary. This paper performs the first sentiment analys...The global growth of the Internet and the rapid expansion of social networks such as Facebook make multilingual sentiment analysis of social media content very necessary. This paper performs the first sentiment analysis on code-mixed Bambara-French Facebook comments. We develop four Long Short-term Memory(LSTM)-based models and two Convolutional Neural Network(CNN)-based models, and use these six models, Na?ve Bayes, and Support Vector Machines(SVM) to conduct experiments on a constituted dataset. Social media text written in Bambara is scarce. To mitigate this weakness, this paper uses dictionaries of character and word indexes to produce character and word embedding in place of pre-trained word vectors. We investigate the effect of comment length on the models and perform a comparison among them. The best performing model is a one-layer CNN deep learning model with an accuracy of 83.23 %.展开更多
In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific...In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods.展开更多
Neural networks have been widely used for English name tagging and have delivered state-of-the-art results. However, for low resource languages, due to the limited resources and lack of training data, taggers tend to ...Neural networks have been widely used for English name tagging and have delivered state-of-the-art results. However, for low resource languages, due to the limited resources and lack of training data, taggers tend to have lower performance, in comparison to the English language. In this paper, we tackle this challenging issue by incorporating multi-level cross-lingual knowledge as attention into a neural architecture, which guides low resource name tagging to achieve a better performance. Specifically, we regard entity type distribution as language independent and use bilingual lexicons to bridge cross-lingual semantic mapping. Then, we jointly apply word-level cross-lingual mutual influence and entity-type level monolingual word distributions to enhance low resource name tagging. Experiments on three languages demonstrate the effectiveness of this neural architecture: for Chinese,Uzbek, and Turkish, we are able to yield significant improvements in name tagging over all previous baselines.展开更多
Ship-hull design is a complex process because the any slight local alteration in ship hull structure may significantly change the hydrostatic and hydrodynamic performances of a ship.To find the optimum hull shape unde...Ship-hull design is a complex process because the any slight local alteration in ship hull structure may significantly change the hydrostatic and hydrodynamic performances of a ship.To find the optimum hull shape under the design requirements,the state-of-art of ship hull design combines computational fluid dynamics computation with geometric modeling.However,this process is very computationally intensive,which is only suitable at the final stage of the design process.To narrow down the design parameter space,in this work,we have developed an AI-based deep learning neural network to realize a real-time prediction of the total resistance of the ship-hull structure in its initial design process.In this work,we have demonstrated how to use the developed DNN model to carry out the initial ship hull design.The validation results showed that the deep learning model could accurately predict the ship hull’s total resistance accurately after being trained,where the average error of all samples in the testing dataset is lower than 4%.Simultaneously,the trained deep learning model can predict the hip’s performances in real-time by inputting geometric modification parameters without tedious preprocessing and calculation processes.The machine learning approach in ship hull design proposed in this work is the first step towards the artificial intelligence-aided design in naval architectures.展开更多
基金the National Research Foundation of Korea(NRF)grant of the Korea government(MSIP)(2020R1A2B5B01001899)(Grantee:GJY,http://www.nrf.re.kr)and Institute of Engineering Research at Seoul National University(Grantee:GJY,http://www.snu.ac.kr).The authors are grateful for their supports.
文摘This paper first proposes a new self-learning data-driven methodology that can develop the failure criteria of unknown anisotropic ductile materials from the minimal number of experimental tests.Establishing failure criteria of anisotropic ductile materials requires time-consuming tests and manual data evaluation.The proposed method can overcome such practical challenges.The methodology is formalized by combining four ideas:1)The deep learning neural network(DLNN)-based material constitutive model,2)Self-learning inverse finite element(SELIFE)simulation,3)Algorithmic identification of failure points from the selflearned stress-strain curves and 4)Derivation of the failure criteria through symbolic regression of the genetic programming.Stress update and the algorithmic tangent operator were formulated in terms of DLNN parameters for nonlinear finite element analysis.Then,the SELIFE simulation algorithm gradually makes the DLNN model learn highly complex multi-axial stress and strain relationships,being guided by the experimental boundary measurements.Following the failure point identification,a self-learning data-driven failure criteria are eventually developed with the help of a reliable symbolic regression algorithm.The methodology and the self-learning data-driven failure criteria were verified by comparing with a reference failure criteria and simulating with different materials orientations,respectively.
基金supported by the National Natural Science Foundation of China (Grant No.51708527)the R&D Project of China Railway Siyuan Survey and Design Institute Group Co.,Ltd. (Grant No.2020k172)。
文摘The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing future hazards to improve seismic safety.Seismic fragility analysis can assist the resilience assessment under different levels of seismic intensity.However,such an analysis is computationally intensive,especially when considering various random factors.The present paper implemented the deep learning neural networks that are integrated into the performance-based earthquake engineering framework to predict fragility functions and associated resilience index of cable-stayed bridges under seismic hazards to improve the computational efficiency while having sufficient accuracy.In the proposed framework,the Latin hypercube sampling was improved with additional uniformity to enhance the training process of the neural network.The well-trained neural network was then applied in a probabilistic simulation process to derive different component fragilities of the cable-stayed bridge.The estimated fragility functions were combined with the Monte Carlo simulations to predict system resilience.The proposed integrated framework in this study was demonstrated on an existing single-pylon cable-stayed bridge in China.Results reveal that this integrated framework yields accurate predictions of fragility functions for the cable-stayed bridge and has reasonable accuracy compared with the conventional methods.
基金funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED)under Grant No.105.08-2019.03.
文摘Flash floods are one of the most dangerous natural disasters,especially in hilly terrain,causing loss of life,property,and infrastructures and sudden disruption of traffic.These types of floods are mostly associated with landslides and erosion of roads within a short time.Most of Vietnamis hilly and mountainous;thus,the problem due to flash flood is severe and requires systematic studies to correctly identify flood susceptible areas for proper landuse planning and traffic management.In this study,three Machine Learning(ML)methods namely Deep Learning Neural Network(DL),Correlation-based FeatureWeighted Naive Bayes(CFWNB),and Adaboost(AB-CFWNB)were used for the development of flash flood susceptibility maps for hilly road section(115 km length)of National Highway(NH)-6 inHoa Binh province,Vietnam.In the proposedmodels,88 past flash flood events were used together with 14 flash floods affecting topographical and geo-environmental factors.The performance of themodels was evaluated using standard statisticalmeasures including Receiver Operating Characteristic(ROC)Curve,Area Under Curve(AUC)and Root Mean Square Error(RMSE).The results revealed that all the models performed well(AUC>0.80)in predicting flash flood susceptibility zones,but the performance of the DL model is the best(AUC:0.972,RMSE:0.352).Therefore,the DL model can be applied to develop an accurate flash flood susceptibility map of hilly terrain which can be used for proper planning and designing of the highways and other infrastructure facilities besides landuse management of the area.
基金This work was partially funded by the Industry Grant Scheme from Jaycorp Berhad in cooperation with UNITAR International University.The authors would like to thank INSFORNET,the Center for Advanced Computing Technology(C-ACT)at Universiti Teknikal Malaysia Melaka(UTeM),and the Center of Intelligent and Autonomous Systems(CIAS)at Universiti Tun Hussein Onn Malaysia(UTHM)for supporting this work.
文摘With an increasing number of services connected to the internet,including cloud computing and Internet of Things(IoT)systems,the prevention of cyberattacks has become more challenging due to the high dimensionality of the network traffic data and access points.Recently,researchers have suggested deep learning(DL)algorithms to define intrusion features through training empirical data and learning anomaly patterns of attacks.However,due to the high dynamics and imbalanced nature of the data,the existing DL classifiers are not completely effective at distinguishing between abnormal and normal behavior line connections for modern networks.Therefore,it is important to design a self-adaptive model for an intrusion detection system(IDS)to improve the detection of attacks.Consequently,in this paper,a novel hybrid weighted deep belief network(HW-DBN)algorithm is proposed for building an efficient and reliable IDS(DeepIoT.IDS)model to detect existing and novel cyberattacks.The HW-DBN algorithm integrates an improved Gaussian–Bernoulli restricted Boltzmann machine(Deep GB-RBM)feature learning operator with a weighted deep neural networks(WDNN)classifier.The CICIDS2017 dataset is selected to evaluate the DeepIoT.IDS model as it contains multiple types of attacks,complex data patterns,noise values,and imbalanced classes.We have compared the performance of the DeepIoT.IDS model with three recent models.The results show the DeepIoT.IDS model outperforms the three other models by achieving a higher detection accuracy of 99.38%and 99.99%for web attack and bot attack scenarios,respectively.Furthermore,it can detect the occurrence of low-frequency attacks that are undetectable by other models.
文摘Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.
基金supported by CITRIS and the Banatao Institute,Air Force Office of Scientific Research(Grant No.FA9550-22-1-0420)National Science Foundation(Grant No.ACI-1548562).
文摘Conventional wing aerodynamic optimization processes can be time-consuming and imprecise due to the complexity of versatile flight missions.Plenty of existing literature has considered two-dimensional infinite airfoil optimization,while three-dimensional finite wing optimizations are subject to limited study because of high computational costs.Here we create an adaptive optimization methodology built upon digitized wing shape deformation and deep learning algorithms,which enable the rapid formulation of finite wing designs for specific aerodynamic performance demands under different cruise conditions.This methodology unfolds in three stages:radial basis function interpolated wing generation,collection of inputs from computational fluid dynamics simulations,and deep neural network that constructs the surrogate model for the optimal wing configuration.It has been demonstrated that the proposed methodology can significantly reduce the computational cost of numerical simulations.It also has the potential to optimize various aerial vehicles undergoing different mission environments,loading conditions,and safety requirements.
基金supported by the Ministry of Higher Education Malaysia(MOHE)under Fundamental Research Grant Scheme(FRGS/1/2022/ICT04/UMP/02/1)Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA)under Distinguished Research Grant(#RDU223003).
文摘This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases of deep neural networks (DNN) for forecasting the solar power generation. The study employs a Feed Forward Neural Network (FFNN) to forecast AC power output using real solar power plant measurements spanning a 34-day period, recorded at 15-minute intervals. The intricate nonlinear relationship between solar irradiation, ambient temperature, and module temperature is captured for accurate prediction. Additionally, the paper conducts a comprehensive comparison with established algorithms, including Differential Evolution (DE-DNN), Barnacles Mating Optimizer (BMO-DNN), Particle Swarm Optimization (PSO-DNN), Harmony Search Algorithm (HSA-DNN), DNN with Adaptive Moment Estimation optimizer (ADAM) and Nonlinear AutoRegressive with eXogenous inputs (NARX). The experimental results distinctly highlight the exceptional performance of EMA-DNN by attaining the lowest Root Mean Squared Error (RMSE) during testing. This contribution not only advances solar power forecasting methodologies but also underscores the potential of merging metaheuristic algorithms with contemporary neural networks for improved accuracy and reliability.
基金This study is jointly sponsored by the Basic Scientific Research Fee of Institute of Geophysics,China Earthquake Administration(DQJB19A0114)the National Natural Science Foundation of China(41804047).
文摘We developed an automatic seismic wave and phase detection software based on PhaseNet,an efficient and highly generalized deep learning neural network for P-and S-wave phase picking.The software organically combines multiple modules including application terminal interface,docker container,data visualization,SSH protocol data transmission and other auxiliary modules.Characterized by a series of technologically powerful functions,the software is highly convenient for all users.To obtain the P-and S-wave picks,one only needs to prepare threecomponent seismic data as input and customize some parameters in the interface.In particular,the software can automatically identify complex waveforms(i.e.continuous or truncated waves)and support multiple types of input data such as SAC,MSEED,NumPy array,etc.A test on the dataset of the Wenchuan aftershocks shows the generalization ability and detection accuracy of the software.The software is expected to increase the efficiency and subjectivity in the manual processing of large amounts of seismic data,thereby providing convenience to regional network monitoring staffs and researchers in the study of Earth's interior.
文摘Distributed denial-of-service(DDoS)attacks are designed to interrupt network services such as email servers and webpages in traditional computer networks.Furthermore,the enormous number of connected devices makes it difficult to operate such a network effectively.Software defined networks(SDN)are networks that are managed through a centralized control system,according to researchers.This controller is the brain of any SDN,composing the forwarding table of all data plane network switches.Despite the advantages of SDN controllers,DDoS attacks are easier to perpetrate than on traditional networks.Because the controller is a single point of failure,if it fails,the entire network will fail.This paper offers a Hybrid Deep Learning Intrusion Detection and Prevention(HDLIDP)framework,which blends signature-based and deep learning neural networks to detect and prevent intrusions.This framework improves detection accuracy while addressing all of the aforementioned problems.To validate the framework,experiments are done on both traditional and SDN datasets;the findings demonstrate a significant improvement in classification accuracy.
文摘The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.
基金supported by a fellowship from China Scholar Council(No.201806680134).
文摘In this work,we constructed a neural network proxy model(NNPM)to estimate the hydrodynamic resistance in the ship hull structure design process,which is based on the hydrodynamic load data obtained from both the potential flow method(PFM)and the viscous flow method(VFM).Here the PFM dataset is applied for the tuning,pre-training,and the VFM dataset is applied for the fine-training.By adopting the PFM and VFM datasets simultaneously,we aim to construct an NNPM to achieve the high-accuracy prediction on hydrodynamic load on ship hull structures exerted from the viscous flow,while ensuring a moderate data-acquiring workload.The high accuracy prediction on hydrodynamic loads and the relatively low dataset establishment cost of the NNPM developed demonstrated the effectiveness and feasibility of hybrid dataset based NNPM achieving a high precision prediction of hydrodynamic loads on ship hull structures.The successful construction of the high precision hydrodynamic prediction NNPM advances the artificial intelligence-assisted design(AIAD)technology for various marine structures.
基金supported by two Ministry of Education(MoE)Singapore Tier 1 research grants under grant numbers R-296-000-208-133 and R-296-000-241-114.
文摘Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach.
基金the Office of Naval Research for supporting this effort through the Consortium for Robotics and Unmanned Systems Education and Research。
文摘Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.
基金This work was partially supported by the Na- tional High Technology Research and Development Program of China (2011AA010502), the National Natural Science Foundation of China (Grant No. 61103095), and the Fundamental Research Funds for the Central Uni- versifies. We are grateful to Shenzhen Key Laboratory of Data Vitalization (Smart City) for supporting this research.
文摘With the development of Internet, people are more likely to post and propagate opinions online. Sentiment analysis is then becoming an important challenge to under- stand the polarity beneath these comments. Currently a lot of approaches from natural language processing's perspec- tive have been employed to conduct this task. The widely used ones include bag-of-words and semantic oriented analy- sis methods. In this research, we further investigate the struc- tural information among words, phrases and sentences within the comments to conduct the sentiment analysis. The idea is inspired by the fact that the structural information is play- ing important role in identifying the overall statement's po- larity. As a result a novel sentiment analysis model is pro- posed based on recurrent neural network, which takes the par- tial document as input and then the next parts to predict the sentiment label distribution rather than the next word. The proposed method learns words representation simultaneously the sentiment distribution. Experimental studies have been conducted on commonly used datasets and the results have shown its promising potential.
文摘A courtyard is an architectural design element which is often known as microclimate modifiers and is responsible to increase the indoor occupant comfort in traditional architecture. The aim of this study is to conduct a parametric evaluation of courtyard design variants in a residential building of different climates with a focus on indoor thermal comfort and utility costs. A brute-force approach is applied to generate a wide range of design alternatives and the simulation workflow is conducted by Grasshopper together with the environmental plugins Ladybug and Honeybee. The main study objective is the evaluation of the occupant thermal comfort in an air-conditioned residential building, energy load, and cost analysis, derived from different design variables including courtyard geometry, window-to-wall ratio, envelope materials, heating, and cooling set-point dead-bands, and building geographical location. Furthermore, a Deep Learning model is developed using the inputs and outputs of the simulation and analysis to transform the outcomes into the algorithmic and tangible environment feasible for predictive applications. The results suggest that regarding the thermal loads, costs, and indoor thermal comfort index (PMV), there are high correlations between the outdoor weather variation and dead-band ranges, while in extreme climates such as Singapore, courtyard spaces might not be efficient enough as expected. Finally, the highly accurate deep learning model is also developed, delivering superior predictive capabilities for the thermal comfort and utility costs of the courtyard designs.
基金Supported by the National Natural Science Foundation of China(61272451,61572380,61772383 and 61702379)the Major State Basic Research Development Program of China(2014CB340600)
文摘The global growth of the Internet and the rapid expansion of social networks such as Facebook make multilingual sentiment analysis of social media content very necessary. This paper performs the first sentiment analysis on code-mixed Bambara-French Facebook comments. We develop four Long Short-term Memory(LSTM)-based models and two Convolutional Neural Network(CNN)-based models, and use these six models, Na?ve Bayes, and Support Vector Machines(SVM) to conduct experiments on a constituted dataset. Social media text written in Bambara is scarce. To mitigate this weakness, this paper uses dictionaries of character and word indexes to produce character and word embedding in place of pre-trained word vectors. We investigate the effect of comment length on the models and perform a comparison among them. The best performing model is a one-layer CNN deep learning model with an accuracy of 83.23 %.
基金Project supported by the National Natural Science Foundation of China(No.61379074)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ12F02003 and LY15F020035)
文摘In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network(CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count(CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods.
基金supported by the National High-Tech Development(863)Program of China(No.2015AA015407)the National Natural Science Foundation of China(Nos.61632011 and 61370164)
文摘Neural networks have been widely used for English name tagging and have delivered state-of-the-art results. However, for low resource languages, due to the limited resources and lack of training data, taggers tend to have lower performance, in comparison to the English language. In this paper, we tackle this challenging issue by incorporating multi-level cross-lingual knowledge as attention into a neural architecture, which guides low resource name tagging to achieve a better performance. Specifically, we regard entity type distribution as language independent and use bilingual lexicons to bridge cross-lingual semantic mapping. Then, we jointly apply word-level cross-lingual mutual influence and entity-type level monolingual word distributions to enhance low resource name tagging. Experiments on three languages demonstrate the effectiveness of this neural architecture: for Chinese,Uzbek, and Turkish, we are able to yield significant improvements in name tagging over all previous baselines.
基金supported by a fellowship from China Scholar Council(No.201806680134)this support is greatly appreciated.
文摘Ship-hull design is a complex process because the any slight local alteration in ship hull structure may significantly change the hydrostatic and hydrodynamic performances of a ship.To find the optimum hull shape under the design requirements,the state-of-art of ship hull design combines computational fluid dynamics computation with geometric modeling.However,this process is very computationally intensive,which is only suitable at the final stage of the design process.To narrow down the design parameter space,in this work,we have developed an AI-based deep learning neural network to realize a real-time prediction of the total resistance of the ship-hull structure in its initial design process.In this work,we have demonstrated how to use the developed DNN model to carry out the initial ship hull design.The validation results showed that the deep learning model could accurately predict the ship hull’s total resistance accurately after being trained,where the average error of all samples in the testing dataset is lower than 4%.Simultaneously,the trained deep learning model can predict the hip’s performances in real-time by inputting geometric modification parameters without tedious preprocessing and calculation processes.The machine learning approach in ship hull design proposed in this work is the first step towards the artificial intelligence-aided design in naval architectures.