Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of dis...Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH_(2).Molecular dynamics(MD) and ab initio molecular dynamics(AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform largescale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH_(2) system by using the deep-potential(DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH_(2) system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark(ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε-ZrH_(2).展开更多
Boron subphosphide(B_(12)P_(2))is a promising high temperature thermoelectric material due to its good thermal stability,and chemical inertness.However,the thermal properties of B_(12)P_(2) have not been well revealed...Boron subphosphide(B_(12)P_(2))is a promising high temperature thermoelectric material due to its good thermal stability,and chemical inertness.However,the thermal properties of B_(12)P_(2) have not been well revealed so far.Here,we first develop a deep learning potential for B_(12)P_(2) based on quantum mechanical calculations.Then the isotropic lattice thermal conductivity(LTC)of crystalline B_(12)P_(2) is predicted to be 39.70±4.38 W/m⋅K from molecular dynamics simulations using this deep learning potential.The LTC exhibits the relationship ofκL~1/T in the temperature range of 300~1500 K.More important,a twin boundary strategy is proposed to reduce the LTC of B_(12)P_(2).In nanotwinned B_(12)P_(2),the phonon transport in all directions is significantly suppressed by twin boundaries(TBs)with the isotropic LTC of 15.85±2.70 W/m⋅K,especially in the direction normal to the TB plane.The decrease of vibrational density of states and phonon participation ratio due to TBs’phonon scattering is the main reason of the low LTC in nanotwinned B_(12)P_(2).In addition,the elastic moduli(B and G)of B_(12)P_(2) crystal decrease by less than 7%after inducing TBs,which suggests that the mechanical properties are not significantly affected by TBs.Overall,this work enriches our understanding of the thermal properties of B_(12)P_(2) and offers a promising approach,i.e.,introducing TBs,to design high-performance thermoelectric materials.展开更多
Fragility is one of the central concepts in glass and liquid sciences,as it characterizes the extent of deviation of viscosity from Arrhenius behavior and is linked to a range of glass properties.However,the intervent...Fragility is one of the central concepts in glass and liquid sciences,as it characterizes the extent of deviation of viscosity from Arrhenius behavior and is linked to a range of glass properties.However,the intervention of crystallization often prevents the assessment of fragility in poor glass-formers,such as supercooled metallic liquids.Hence experimental data on their compositional dependence are scarce,let alone fundamentally understood.In this work,we use fast scanning calorimetry to overcome this obstacle and systematically study the fragility in a ternary La–Ni–Al system,over previously inaccessible composition space.We observe fragility dropped in a small range with the Al alloying,indicating an alloying-induced fragility crossover.We use x-ray photoelectron spectroscopy,resistance measurements,electronic structure calculations,and DFT-based deep-learning atomic simulations to investigate the cause of this fragility drop.These results show that the fragility crossover can be fundamentally ascribed to the electronic covalency associated with the unique Al–Al interactions.Our findings provide insight into the origin of fragility in metallic liquids from an electronic structure perspective and pave a new way for the design of metallic glasses.展开更多
基金Project supported by the Joint Fund of the National Natural Science Foundation of China–“Ye Qisun”Science Fund(Grant No.U2341251)。
文摘Zirconium hydride(ZrH_(2)) is an ideal neutron moderator material. However, radiation effect significantly changes its properties, which affect its behavior and the lifespan of the reactor. The threshold energy of displacement is an important quantity of the number of radiation defects produced, which helps us to predict the evolution of radiation defects in ZrH_(2).Molecular dynamics(MD) and ab initio molecular dynamics(AIMD) are two main methods of calculating the threshold energy of displacement. The MD simulations with empirical potentials often cannot accurately depict the transitional states that lattice atoms must surpass to reach an interstitial state. Additionally, the AIMD method is unable to perform largescale calculation, which poses a computational challenge beyond the simulation range of density functional theory. Machine learning potentials are renowned for their high accuracy and efficiency, making them an increasingly preferred choice for molecular dynamics simulations. In this work, we develop an accurate potential energy model for the ZrH_(2) system by using the deep-potential(DP) method. The DP model has a high degree of agreement with first-principles calculations for the typical defect energy and mechanical properties of the ZrH_(2) system, including the basic bulk properties, formation energy of point defects, as well as diffusion behavior of hydrogen and zirconium. By integrating the DP model with Ziegler–Biersack–Littmark(ZBL) potential, we can predict the threshold energy of displacement of zirconium and hydrogen in ε-ZrH_(2).
文摘Boron subphosphide(B_(12)P_(2))is a promising high temperature thermoelectric material due to its good thermal stability,and chemical inertness.However,the thermal properties of B_(12)P_(2) have not been well revealed so far.Here,we first develop a deep learning potential for B_(12)P_(2) based on quantum mechanical calculations.Then the isotropic lattice thermal conductivity(LTC)of crystalline B_(12)P_(2) is predicted to be 39.70±4.38 W/m⋅K from molecular dynamics simulations using this deep learning potential.The LTC exhibits the relationship ofκL~1/T in the temperature range of 300~1500 K.More important,a twin boundary strategy is proposed to reduce the LTC of B_(12)P_(2).In nanotwinned B_(12)P_(2),the phonon transport in all directions is significantly suppressed by twin boundaries(TBs)with the isotropic LTC of 15.85±2.70 W/m⋅K,especially in the direction normal to the TB plane.The decrease of vibrational density of states and phonon participation ratio due to TBs’phonon scattering is the main reason of the low LTC in nanotwinned B_(12)P_(2).In addition,the elastic moduli(B and G)of B_(12)P_(2) crystal decrease by less than 7%after inducing TBs,which suggests that the mechanical properties are not significantly affected by TBs.Overall,this work enriches our understanding of the thermal properties of B_(12)P_(2) and offers a promising approach,i.e.,introducing TBs,to design high-performance thermoelectric materials.
基金National Thousand Young Talents Program of China,and the National Natural Science Foundation of China(NSFC 52201180).
文摘Fragility is one of the central concepts in glass and liquid sciences,as it characterizes the extent of deviation of viscosity from Arrhenius behavior and is linked to a range of glass properties.However,the intervention of crystallization often prevents the assessment of fragility in poor glass-formers,such as supercooled metallic liquids.Hence experimental data on their compositional dependence are scarce,let alone fundamentally understood.In this work,we use fast scanning calorimetry to overcome this obstacle and systematically study the fragility in a ternary La–Ni–Al system,over previously inaccessible composition space.We observe fragility dropped in a small range with the Al alloying,indicating an alloying-induced fragility crossover.We use x-ray photoelectron spectroscopy,resistance measurements,electronic structure calculations,and DFT-based deep-learning atomic simulations to investigate the cause of this fragility drop.These results show that the fragility crossover can be fundamentally ascribed to the electronic covalency associated with the unique Al–Al interactions.Our findings provide insight into the origin of fragility in metallic liquids from an electronic structure perspective and pave a new way for the design of metallic glasses.