期刊文献+
共找到295,831篇文章
< 1 2 250 >
每页显示 20 50 100
Extensive identification of landslide boundaries using remote sensing images and deep learning method
1
作者 Chang-dong Li Peng-fei Feng +3 位作者 Xi-hui Jiang Shuang Zhang Jie Meng Bing-chen Li 《China Geology》 CAS CSCD 2024年第2期277-290,共14页
The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evalu... The frequent occurrence of extreme weather events has rendered numerous landslides to a global natural disaster issue.It is crucial to rapidly and accurately determine the boundaries of landslides for geohazards evaluation and emergency response.Therefore,the Skip Connection DeepLab neural network(SCDnn),a deep learning model based on 770 optical remote sensing images of landslide,is proposed to improve the accuracy of landslide boundary detection.The SCDnn model is optimized for the over-segmentation issue which occurs in conventional deep learning models when there is a significant degree of similarity between topographical geomorphic features.SCDnn exhibits notable improvements in landslide feature extraction and semantic segmentation by combining an enhanced Atrous Spatial Pyramid Convolutional Block(ASPC)with a coding structure that reduces model complexity.The experimental results demonstrate that SCDnn can identify landslide boundaries in 119 images with MIoU values between 0.8and 0.9;while 52 images with MIoU values exceeding 0.9,which exceeds the identification accuracy of existing techniques.This work can offer a novel technique for the automatic extensive identification of landslide boundaries in remote sensing images in addition to establishing the groundwork for future inve stigations and applications in related domains. 展开更多
关键词 GEOHAZARD Landslide boundary detection Remote sensing image deep learning model Steep slope Large annual rainfall Human settlements INFRASTRUCTURE Agricultural land Eastern Tibetan Plateau Geological hazards survey engineering
下载PDF
A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography
2
作者 Usman Khan Muhammad Khalid Khan +4 位作者 Muhammad Ayub Latif Muhammad Naveed Muhammad Mansoor Alam Salman A.Khan Mazliham Mohd Su’ud 《Computers, Materials & Continua》 SCIE EI 2024年第3期2967-3000,共34页
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma... Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements. 展开更多
关键词 Machine learning deep learning unmanned aerial vehicles multi-spectral images image recognition object detection hyperspectral images aerial photography
下载PDF
Deep Learning-Based Classification of Rotten Fruits and Identification of Shelf Life
3
作者 S.Sofana Reka Ankita Bagelikar +2 位作者 Prakash Venugopal V.Ravi Harimurugan Devarajan 《Computers, Materials & Continua》 SCIE EI 2024年第1期781-794,共14页
The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that... The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits. 展开更多
关键词 Rotten fruit detection shelf life deep learning convolutional neural network machine learning gaussian naïve bayes random forest visual geometry group16
下载PDF
Combined CNN-LSTM Deep Learning Algorithms for Recognizing Human Physical Activities in Large and Distributed Manners:A Recommendation System
4
作者 Ameni Ellouze Nesrine Kadri +1 位作者 Alaa Alaerjan Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第4期351-372,共22页
Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell t... Recognizing human activity(HAR)from data in a smartphone sensor plays an important role in the field of health to prevent chronic diseases.Daily and weekly physical activities are recorded on the smartphone and tell the user whether he is moving well or not.Typically,smartphones and their associated sensing devices operate in distributed and unstable environments.Therefore,collecting their data and extracting useful information is a significant challenge.In this context,the aimof this paper is twofold:The first is to analyze human behavior based on the recognition of physical activities.Using the results of physical activity detection and classification,the second part aims to develop a health recommendation system to notify smartphone users about their healthy physical behavior related to their physical activities.This system is based on the calculation of calories burned by each user during physical activities.In this way,conclusions can be drawn about a person’s physical behavior by estimating the number of calories burned after evaluating data collected daily or even weekly following a series of physical workouts.To identify and classify human behavior our methodology is based on artificial intelligence models specifically deep learning techniques like Long Short-Term Memory(LSTM),stacked LSTM,and bidirectional LSTM.Since human activity data contains both spatial and temporal information,we proposed,in this paper,to use of an architecture allowing the extraction of the two types of information simultaneously.While Convolutional Neural Networks(CNN)has an architecture designed for spatial information,our idea is to combine CNN with LSTM to increase classification accuracy by taking into consideration the extraction of both spatial and temporal data.The results obtained achieved an accuracy of 96%.On the other side,the data learned by these algorithms is prone to error and uncertainty.To overcome this constraint and improve performance(96%),we proposed to use the fusion mechanisms.The last combines deep learning classifiers tomodel non-accurate and ambiguous data to obtain synthetic information to aid in decision-making.The Voting and Dempster-Shafer(DS)approaches are employed.The results showed that fused classifiers based on DS theory outperformed individual classifiers(96%)with the highest accuracy level of 98%.Also,the findings disclosed that participants engaging in physical activities are healthy,showcasing a disparity in the distribution of physical activities between men and women. 展开更多
关键词 Human physical activities smartphone sensors deep learning distributed monitoring recommendation system uncertainty HEALTHY CALORIES
下载PDF
Integrated Machine Learning and Deep Learning Models for Cardiovascular Disease Risk Prediction: A Comprehensive Comparative Study
5
作者 Shadman Mahmood Khan Pathan Sakan Binte Imran 《Journal of Intelligent Learning Systems and Applications》 2024年第1期12-22,共11页
Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of tra... Cardiovascular Diseases (CVDs) pose a significant global health challenge, necessitating accurate risk prediction for effective preventive measures. This comprehensive comparative study explores the performance of traditional Machine Learning (ML) and Deep Learning (DL) models in predicting CVD risk, utilizing a meticulously curated dataset derived from health records. Rigorous preprocessing, including normalization and outlier removal, enhances model robustness. Diverse ML models (Logistic Regression, Random Forest, Support Vector Machine, K-Nearest Neighbor, Decision Tree, and Gradient Boosting) are compared with a Long Short-Term Memory (LSTM) neural network for DL. Evaluation metrics include accuracy, ROC AUC, computation time, and memory usage. Results identify the Gradient Boosting Classifier and LSTM as top performers, demonstrating high accuracy and ROC AUC scores. Comparative analyses highlight model strengths and limitations, contributing valuable insights for optimizing predictive strategies. This study advances predictive analytics for cardiovascular health, with implications for personalized medicine. The findings underscore the versatility of intelligent systems in addressing health challenges, emphasizing the broader applications of ML and DL in disease identification beyond cardiovascular health. 展开更多
关键词 Cardiovascular Disease Machine learning deep learning Predictive Modeling Risk Assessment Comparative Analysis Gradient Boosting LSTM
下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data
6
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
下载PDF
Construction of apricot variety search engine based on deep learning
7
作者 Chen Chen Lin Wang +8 位作者 Huimin Liu Jing Liu Wanyu Xu Mengzhen Huang Ningning Gou Chu Wang Haikun Bai Gengjie Jia Tana Wuyun 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期387-397,共11页
Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management.... Apricot has a long history of cultivation and has many varieties and types. The traditional variety identification methods are timeconsuming and labor-consuming, posing grand challenges to apricot resource management. Tool development in this regard will help researchers quickly identify variety information. This study photographed apricot fruits outdoors and indoors and constructed a dataset that can precisely classify the fruits using a U-net model (F-score:99%), which helps to obtain the fruit's size, shape, and color features. Meanwhile, a variety search engine was constructed, which can search and identify variety from the database according to the above features. Besides, a mobile and web application (ApricotView) was developed, and the construction mode can be also applied to other varieties of fruit trees.Additionally, we have collected four difficult-to-identify seed datasets and used the VGG16 model for training, with an accuracy of 97%, which provided an important basis for ApricotView. To address the difficulties in data collection bottlenecking apricot phenomics research, we developed the first apricot database platform of its kind (ApricotDIAP, http://apricotdiap.com/) to accumulate, manage, and publicize scientific data of apricot. 展开更多
关键词 APRICOT VARIETY Convolutional neural network deep learning Database platform Mobile application Image retrieval
下载PDF
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
8
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid Sheeraz Akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ECG false positive rate deep learning CLASSIFICATION
下载PDF
Credit Card Fraud Detection Using Improved Deep Learning Models
9
作者 Sumaya S.Sulaiman Ibraheem Nadher Sarab M.Hameed 《Computers, Materials & Continua》 SCIE EI 2024年第1期1049-1069,共21页
Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown pr... Fraud of credit cards is a major issue for financial organizations and individuals.As fraudulent actions become more complex,a demand for better fraud detection systems is rising.Deep learning approaches have shown promise in several fields,including detecting credit card fraud.However,the efficacy of these models is heavily dependent on the careful selection of appropriate hyperparameters.This paper introduces models that integrate deep learning models with hyperparameter tuning techniques to learn the patterns and relationships within credit card transaction data,thereby improving fraud detection.Three deep learning models:AutoEncoder(AE),Convolution Neural Network(CNN),and Long Short-Term Memory(LSTM)are proposed to investigate how hyperparameter adjustment impacts the efficacy of deep learning models used to identify credit card fraud.The experiments conducted on a European credit card fraud dataset using different hyperparameters and three deep learning models demonstrate that the proposed models achieve a tradeoff between detection rate and precision,leading these models to be effective in accurately predicting credit card fraud.The results demonstrate that LSTM significantly outperformed AE and CNN in terms of accuracy(99.2%),detection rate(93.3%),and area under the curve(96.3%).These proposed models have surpassed those of existing studies and are expected to make a significant contribution to the field of credit card fraud detection. 展开更多
关键词 Card fraud detection hyperparameter tuning deep learning autoencoder convolution neural network long short-term memory RESAMPLING
下载PDF
Exploring deep learning for landslide mapping:A comprehensive review
10
作者 Zhi-qiang Yang Wen-wen Qi +1 位作者 Chong Xu Xiao-yi Shao 《China Geology》 CAS CSCD 2024年第2期330-350,共21页
A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized f... A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection. 展开更多
关键词 Landslide Mapping Quantitative hazard assessment deep learning Artificial intelligence Neural network Big data Geological hazard survery engineering
下载PDF
An Artificial Intelligence-Based Framework for Fruits Disease Recognition Using Deep Learning
11
作者 Irfan Haider Muhammad Attique Khan +2 位作者 Muhammad Nazir Taerang Kim Jae-Hyuk Cha 《Computer Systems Science & Engineering》 2024年第2期529-554,共26页
Fruit infections have an impact on both the yield and the quality of the crop.As a result,an automated recognition system for fruit leaf diseases is important.In artificial intelligence(AI)applications,especially in a... Fruit infections have an impact on both the yield and the quality of the crop.As a result,an automated recognition system for fruit leaf diseases is important.In artificial intelligence(AI)applications,especially in agriculture,deep learning shows promising disease detection and classification results.The recent AI-based techniques have a few challenges for fruit disease recognition,such as low-resolution images,small datasets for learning models,and irrelevant feature extraction.This work proposed a new fruit leaf leaf leaf disease recognition framework using deep learning features and improved pathfinder optimization.Three fruit types have been employed in this work for the validation process,such as apple,grape,and Citrus.In the first step,a noisy dataset is prepared by employing the original images to learn the designed framework better.The EfficientNet-B0 deep model is fine-tuned on the next step and trained separately on the original and noisy data.After that,features are fused using a serial concatenation approach that is later optimized in the next step using an improved Path Finder Algorithm(PFA).This algorithm aims to select the best features based on the fitness score and ignore redundant information.The selected features are finally classified using machine learning classifiers such as Medium Neural Network,Wide Neural Network,and Support Vector Machine.The experimental process was conducted on each fruit dataset separately and obtained an accuracy of 100%,99.7%,99.7%,and 93.4%for apple,grape,Citrus fruit,and citrus plant leaves,respectively.A detailed analysis is conducted and also compared with the recent techniques,and the proposed framework shows improved accuracy. 展开更多
关键词 Fruit disease contrast enhancement augmentation deep learning FUSION feature selection classification
下载PDF
Automatic detection of small bowel lesions with different bleeding risks based on deep learning models 被引量:1
12
作者 Rui-Ya Zhang Peng-Peng Qiang +5 位作者 Ling-Jun Cai Tao Li Yan Qin Yu Zhang Yi-Qing Zhao Jun-Ping Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第2期170-183,共14页
BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some ... BACKGROUND Deep learning provides an efficient automatic image recognition method for small bowel(SB)capsule endoscopy(CE)that can assist physicians in diagnosis.However,the existing deep learning models present some unresolved challenges.AIM To propose a novel and effective classification and detection model to automatically identify various SB lesions and their bleeding risks,and label the lesions accurately so as to enhance the diagnostic efficiency of physicians and the ability to identify high-risk bleeding groups.METHODS The proposed model represents a two-stage method that combined image classification with object detection.First,we utilized the improved ResNet-50 classification model to classify endoscopic images into SB lesion images,normal SB mucosa images,and invalid images.Then,the improved YOLO-V5 detection model was utilized to detect the type of lesion and its risk of bleeding,and the location of the lesion was marked.We constructed training and testing sets and compared model-assisted reading with physician reading.RESULTS The accuracy of the model constructed in this study reached 98.96%,which was higher than the accuracy of other systems using only a single module.The sensitivity,specificity,and accuracy of the model-assisted reading detection of all images were 99.17%,99.92%,and 99.86%,which were significantly higher than those of the endoscopists’diagnoses.The image processing time of the model was 48 ms/image,and the image processing time of the physicians was 0.40±0.24 s/image(P<0.001).CONCLUSION The deep learning model of image classification combined with object detection exhibits a satisfactory diagnostic effect on a variety of SB lesions and their bleeding risks in CE images,which enhances the diagnostic efficiency of physicians and improves the ability of physicians to identify high-risk bleeding groups. 展开更多
关键词 Artificial intelligence deep learning Capsule endoscopy Image classification Object detection Bleeding risk
下载PDF
Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: A systematic review 被引量:11
13
作者 Samy A Azer 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2019年第12期1218-1230,共13页
BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algor... BACKGROUND Artificial intelligence,such as convolutional neural networks(CNNs),has been used in the interpretation of images and the diagnosis of hepatocellular cancer(HCC)and liver masses.CNN,a machine-learning algorithm similar to deep learning,has demonstrated its capability to recognise specific features that can detect pathological lesions.AIM To assess the use of CNNs in examining HCC and liver masses images in the diagnosis of cancer and evaluating the accuracy level of CNNs and their performance.METHODS The databases PubMed,EMBASE,and the Web of Science and research books were systematically searched using related keywords.Studies analysing pathological anatomy,cellular,and radiological images on HCC or liver masses using CNNs were identified according to the study protocol to detect cancer,differentiating cancer from other lesions,or staging the lesion.The data were extracted as per a predefined extraction.The accuracy level and performance of the CNNs in detecting cancer or early stages of cancer were analysed.The primary outcomes of the study were analysing the type of cancer or liver mass and identifying the type of images that showed optimum accuracy in cancer detection.RESULTS A total of 11 studies that met the selection criteria and were consistent with the aims of the study were identified.The studies demonstrated the ability to differentiate liver masses or differentiate HCC from other lesions(n=6),HCC from cirrhosis or development of new tumours(n=3),and HCC nuclei grading or segmentation(n=2).The CNNs showed satisfactory levels of accuracy.The studies aimed at detecting lesions(n=4),classification(n=5),and segmentation(n=2).Several methods were used to assess the accuracy of CNN models used.CONCLUSION The role of CNNs in analysing images and as tools in early detection of HCC or liver masses has been demonstrated in these studies.While a few limitations have been identified in these studies,overall there was an optimal level of accuracy of the CNNs used in segmentation and classification of liver cancers images. 展开更多
关键词 deep learning Convolutional neural network HEPATOCELLULAR CARCINOMA LIVER MASSES LIVER cancer Medical imaging Classification Segmentation Artificial INTELLIGENCE COMPUTER-AIDED diagnosis
下载PDF
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning
14
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card Working condition recognition deep learning Time-frequency signature Time-frequency signature matrix
下载PDF
Social Media-Based Surveillance Systems for Health Informatics Using Machine and Deep Learning Techniques:A Comprehensive Review and Open Challenges
15
作者 Samina Amin Muhammad Ali Zeb +3 位作者 Hani Alshahrani Mohammed Hamdi Mohammad Alsulami Asadullah Shaikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1167-1202,共36页
Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM... Social media(SM)based surveillance systems,combined with machine learning(ML)and deep learning(DL)techniques,have shown potential for early detection of epidemic outbreaks.This review discusses the current state of SM-based surveillance methods for early epidemic outbreaks and the role of ML and DL in enhancing their performance.Since,every year,a large amount of data related to epidemic outbreaks,particularly Twitter data is generated by SM.This paper outlines the theme of SM analysis for tracking health-related issues and detecting epidemic outbreaks in SM,along with the ML and DL techniques that have been configured for the detection of epidemic outbreaks.DL has emerged as a promising ML technique that adaptsmultiple layers of representations or features of the data and yields state-of-the-art extrapolation results.In recent years,along with the success of ML and DL in many other application domains,both ML and DL are also popularly used in SM analysis.This paper aims to provide an overview of epidemic outbreaks in SM and then outlines a comprehensive analysis of ML and DL approaches and their existing applications in SM analysis.Finally,this review serves the purpose of offering suggestions,ideas,and proposals,along with highlighting the ongoing challenges in the field of early outbreak detection that still need to be addressed. 展开更多
关键词 Social media EPIDEMIC machine learning deep learning health informatics PANDEMIC
下载PDF
A Deep Learning Approach for Landmines Detection Based on Airborne Magnetometry Imaging and Edge Computing
16
作者 Ahmed Barnawi Krishan Kumar +2 位作者 Neeraj Kumar Bander Alzahrani Amal Almansour 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2117-2137,共21页
Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human lives.The detonation of these landmines results in thousands of casualties repo... Landmines continue to pose an ongoing threat in various regions around the world,with countless buried landmines affecting numerous human lives.The detonation of these landmines results in thousands of casualties reported worldwide annually.Therefore,there is a pressing need to employ diverse landmine detection techniques for their removal.One effective approach for landmine detection is UAV(Unmanned Aerial Vehicle)based AirborneMagnetometry,which identifies magnetic anomalies in the local terrestrial magnetic field.It can generate a contour plot or heat map that visually represents the magnetic field strength.Despite the effectiveness of this approach,landmine removal remains a challenging and resource-intensive task,fraughtwith risks.Edge computing,on the other hand,can play a crucial role in critical drone monitoring applications like landmine detection.By processing data locally on a nearby edge server,edge computing can reduce communication latency and bandwidth requirements,allowing real-time analysis of magnetic field data.It enables faster decision-making and more efficient landmine detection,potentially saving lives and minimizing the risks involved in the process.Furthermore,edge computing can provide enhanced security and privacy by keeping sensitive data close to the source,reducing the chances of data exposure during transmission.This paper introduces the MAGnetometry Imaging based Classification System(MAGICS),a fully automated UAV-based system designed for landmine and buried object detection and localization.We have developed an efficient deep learning-based strategy for automatic image classification using magnetometry dataset traces.By simulating the proposal in various network scenarios,we have successfully detected landmine signatures present in themagnetometry images.The trained models exhibit significant performance improvements,achieving a maximum mean average precision value of 97.8%. 展开更多
关键词 CNN deep learning landmine detection MAGNETOMETER mean average precision UAV
下载PDF
Sleep Posture Classification Using RGB and Thermal Cameras Based on Deep Learning Model
17
作者 Awais Khan Chomyong Kim +2 位作者 Jung-Yeon Kim Ahsan Aziz Yunyoung Nam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1729-1755,共27页
Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challeng... Sleep posture surveillance is crucial for patient comfort,yet current systems face difficulties in providing compre-hensive studies due to the obstruction caused by blankets.Precise posture assessment remains challenging because of the complex nature of the human body and variations in sleep patterns.Consequently,this study introduces an innovative method utilizing RGB and thermal cameras for comprehensive posture classification,thereby enhancing the analysis of body position and comfort.This method begins by capturing a dataset of sleep postures in the form of videos using RGB and thermal cameras,which depict six commonly adopted postures:supine,left log,right log,prone head,prone left,and prone right.The study involves 10 participants under two conditions:with and without blankets.Initially,the database is normalized into a video frame.The subsequent step entails training a fine-tuned,pretrained Visual Geometry Group(VGG16)and ResNet50 model.In the third phase,the extracted features are utilized for classification.The fourth step of the proposed approach employs a serial fusion technique based on the normal distribution to merge the vectors derived from both the RGB and thermal datasets.Finally,the fused vectors are passed to machine learning classifiers for final classification.The dataset,which includes human sleep postures used in this study’s experiments,achieved a 96.7%accuracy rate using the Quadratic Support Vector Machine(QSVM)without the blanket.Moreover,the Linear SVM,when utilized with a blanket,attained an accuracy of 96%.When normal distribution serial fusion was applied to the blanket features,it resulted in a remarkable average accuracy of 99%. 展开更多
关键词 Human sleep posture VGG16 deep learning ResNet50 FUSION machine learning
下载PDF
Securing Cloud-Encrypted Data:Detecting Ransomware-as-a-Service(RaaS)Attacks through Deep Learning Ensemble
18
作者 Amardeep Singh Hamad Ali Abosaq +5 位作者 Saad Arif Zohaib Mushtaq Muhammad Irfan Ghulam Abbas Arshad Ali Alanoud Al Mazroa 《Computers, Materials & Continua》 SCIE EI 2024年第4期857-873,共17页
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and ... Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and everpresent threat is Ransomware-as-a-Service(RaaS)assaults,which enable even individuals with minimal technical knowledge to conduct ransomware operations.This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models.For this purpose,the network intrusion detection dataset“UNSWNB15”from the Intelligent Security Group of the University of New South Wales,Australia is analyzed.In the initial phase,the rectified linear unit-,scaled exponential linear unit-,and exponential linear unit-based three separate Multi-Layer Perceptron(MLP)models are developed.Later,using the combined predictive power of these three MLPs,the RansoDetect Fusion ensemble model is introduced in the suggested methodology.The proposed ensemble technique outperforms previous studieswith impressive performance metrics results,including 98.79%accuracy and recall,98.85%precision,and 98.80%F1-score.The empirical results of this study validate the ensemble model’s ability to improve cybersecurity defenses by showing that it outperforms individual MLPmodels.In expanding the field of cybersecurity strategy,this research highlights the significance of combined deep learning models in strengthening intrusion detection systems against sophisticated cyber threats. 展开更多
关键词 Cloud encryption RAAS ENSEMBLE threat detection deep learning CYBERSECURITY
下载PDF
A gated recurrent unit model to predict Poisson’s ratio using deep learning
19
作者 Fahd Saeed Alakbari Mysara Eissa Mohyaldinn +4 位作者 Mohammed Abdalla Ayoub Ibnelwaleed A.Hussein Ali Samer Muhsan Syahrir Ridha Abdullah Abduljabbar Salih 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期123-135,共13页
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe... Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs. 展开更多
关键词 Static Poissons ratio deep learning Gated recurrent unit(GRU) Sand control Trend analysis Geomechanical properties
下载PDF
Human Gait Recognition for Biometrics Application Based on Deep Learning Fusion Assisted Framework
20
作者 Ch Avais Hanif Muhammad Ali Mughal +3 位作者 Muhammad Attique Khan Nouf Abdullah Almujally Taerang Kim Jae-Hyuk Cha 《Computers, Materials & Continua》 SCIE EI 2024年第1期357-374,共18页
The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in c... The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work. 展开更多
关键词 Gait recognition covariant factors BIOMETRIC deep learning FUSION feature selection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部