期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
基于改进Grabcut分割与多特征决策融合的电力线放电痕迹识别
1
作者 邹国锋 邵楠 +2 位作者 王连辉 梁栋 徐丙垠 《科学技术与工程》 北大核心 2024年第28期12239-12250,共12页
电力线触树故障中,导线表面的遗留痕迹是事故防治和责任认定的重要依据,但目前中外针对触树后电力线放电痕迹特征规律和辨识方法的研究极其匮乏。为此,搭建10 kV中压线路触树放电实验平台,采集放电后的导线表面痕迹图像,并对导线表面痕... 电力线触树故障中,导线表面的遗留痕迹是事故防治和责任认定的重要依据,但目前中外针对触树后电力线放电痕迹特征规律和辨识方法的研究极其匮乏。为此,搭建10 kV中压线路触树放电实验平台,采集放电后的导线表面痕迹图像,并对导线表面痕迹特征进行系统分析,为人工巡检和智能化痕迹识别提供基础依据。然后,提出改进型Grabcut前景提取方法,综合利用U^(2)Net的自动分割特点和Grabcut的高精度优势,解决Grabcut算法中初始框无法自动确定的问题,实现复杂背景下导线痕迹区域自动精准分割。最后,提出基于低层纹理、颜色特征和高层深度特征的导线表面痕迹全面表征,并采用多数投票规则实现低层和高层特征识别结果决策融合,获得导线痕迹辨识结果,测试实验中平均识别准确率达到91.68%,证明了方法的有效性。 展开更多
关键词 树线放电 前景提取 低层特征 深度特征 决策融合 痕迹识别
下载PDF
面向飞行试验认知不确定性的气动数据融合方法
2
作者 仇静轩 司海青 +4 位作者 高昕睿 曹九发 吴晓军 赵炜 张培红 《空气动力学学报》 CSCD 北大核心 2024年第10期69-83,共15页
在飞机设计领域中,不同的气动数据获取手段各有利弊,仅靠单一手段难以精确预测飞机的气动特性。因此,在实际工程应用中通常需要融合多种来源的数据,以获得更为准确和全面的气动特性描述。针对这一需求,以典型喷气式飞机为例,采用真实飞... 在飞机设计领域中,不同的气动数据获取手段各有利弊,仅靠单一手段难以精确预测飞机的气动特性。因此,在实际工程应用中通常需要融合多种来源的数据,以获得更为准确和全面的气动特性描述。针对这一需求,以典型喷气式飞机为例,采用真实飞行数据、模拟飞行数据以及计算流体力学(CFD)仿真数据,结合深度神经网络,提出了一种认知不确定性的气动数据双层深度证据融合算法。该算法通过引入两种标准的置信分配方法,并将深度神经网络的输出与变分狄利克雷分布参数相结合,来表达和量化模型融合过程中的认知不确定性,并借助Dempster-Shafer理论有效地融合不同来源的数据及其不确定性。研究结果表明,该算法有效地融合了多源气动数据,所得结果不仅更加符合物理规律,而且提供了更高精度和更全面的气动数据,相比于单一数据源具有明显优势。 展开更多
关键词 双层深度证据融合 多源气动数据 认知不确定性 飞行试验 CFD仿真
下载PDF
自适应特征融合与cosIoU-NMS的目标检测算法 被引量:1
3
作者 马素刚 李宁博 +2 位作者 彭冠升 杨小宝 侯志强 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第1期112-121,共10页
针对经典的有锚框检测算法RetinaNet、无锚框检测算法FCOS等目标检测算法中存在漏检以及重复检测的问题,提出一种自适应特征融合与cosIoU-NMS的目标检测算法.首先采用自适应特征融合模块对多尺度特征中相邻3层特征加权融合,获取丰富的... 针对经典的有锚框检测算法RetinaNet、无锚框检测算法FCOS等目标检测算法中存在漏检以及重复检测的问题,提出一种自适应特征融合与cosIoU-NMS的目标检测算法.首先采用自适应特征融合模块对多尺度特征中相邻3层特征加权融合,获取丰富的上下文信息和空间信息;然后采用cosIoU计算检测框之间的余弦相似度与重叠面积,使目标定位更准确;最后使用cosIoU-NMS代替Greedy-NMS抑制置信度分数较高的冗余框,保留更准确的检测结果.以RetinaNet和FCOS为基准,在PASCAL VOC数据集上的实验结果表明,所提算法的检测精度达到81.3%和82.3%,分别提升2.8个百分点和1.2个百分点;在MSCOCO数据集上检测精度达到36.8%和38.0%,分别提升1.0个百分点和0.7个百分点;该算法能够增强特征表征能力,筛除多余的检测框,有效地提高检测性能. 展开更多
关键词 深度学习 目标检测 多尺度特征融合 交并比 非极大值抑制 余弦相似度
下载PDF
基于多层级信息融合网络的微表情识别方法 被引量:1
4
作者 陈妍 吴乐晨 王聪 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1445-1457,共13页
微表情是人类情感表达过程中细微且不自主的表情变化,实现准确和高效的微表情识别,对于心理疾病的早期诊断和治疗有重要意义.现有的微表情识别方法大多未考虑面部产生微表情时各个关键部位间的联系,难以在小样本图像空间上捕捉到微表情... 微表情是人类情感表达过程中细微且不自主的表情变化,实现准确和高效的微表情识别,对于心理疾病的早期诊断和治疗有重要意义.现有的微表情识别方法大多未考虑面部产生微表情时各个关键部位间的联系,难以在小样本图像空间上捕捉到微表情的细微变化,导致识别率不高.为此,提出一种基于多层级信息融合网络的微表情识别方法.该方法包括一个基于频率幅值的视频帧选取策略,能从微表情视频中筛选出包含高强度表情信息的图像帧、一个基于自注意力机制和图卷积网络的多层级信息提取网络以及一个引入图像全局信息的融合网络,能从不同层次捕获人脸微表情的细微变化,来提高对特定类别的辨识度.在公开数据集上的实验结果表明,该方法能有效提高微表情识别的准确率,与其他先进方法相比,具有更好的性能. 展开更多
关键词 微表情识别 深度学习 图卷积网络 多层级融合
下载PDF
多模态深层次高置信度融合跟踪算法 被引量:1
5
作者 高伟 薛杉 +4 位作者 胡秋霞 李嘉琦 田杰 饶晔 杨举 《计算机系统应用》 2024年第9期153-163,共11页
为解决单目标跟踪中因目标外观及环境变化导致的跟踪失败问题,提出一种多模态深层次高置信度融合跟踪算法.首先构建目标颜色模型和基于双线性插值HOG特征形状模型的高维度多模态模型,之后对候选目标利用粒子滤波进行搜索.针对模型融合... 为解决单目标跟踪中因目标外观及环境变化导致的跟踪失败问题,提出一种多模态深层次高置信度融合跟踪算法.首先构建目标颜色模型和基于双线性插值HOG特征形状模型的高维度多模态模型,之后对候选目标利用粒子滤波进行搜索.针对模型融合的难点,通过准确量化形状和颜色模型多种置信度并设计高置信度融合准则,以实现该多模态模型中不同置信度的深层次自适应加权平衡融合.最后针对模型更新参数固定的问题,设计非线性分级平衡更新策略.经过在OTB-2015数据集上的测试,发现该算法的平均CLE和OS在所有参照算法表现中均表现最佳,其值分别为30.57和0.609.此外,其FPS为15.67,满足了跟踪算法在一般情况下的实时性要求.在某些常见的特定场景中,其精确率、成功率指标在多数情况下的表现也超过了同类顶尖算法. 展开更多
关键词 视觉目标跟踪 多模态 置信度融合 深层次加权 分级平衡更新
下载PDF
多尺度特征融合与交互的伪装目标检测网络
6
作者 张成 刘研 宋慧慧 《计算机系统应用》 2024年第8期90-97,共8页
伪装目标检测是一项在复杂场景中定位和识别伪装目标的任务.目前基于深度神经网络的方法已初步运用,但在复杂场景下遇到干扰时,许多方法无法充分利用目标的多级特征来提取丰富的语义信息,仅依靠固定尺寸特征识别伪装目标.为解决这一问题... 伪装目标检测是一项在复杂场景中定位和识别伪装目标的任务.目前基于深度神经网络的方法已初步运用,但在复杂场景下遇到干扰时,许多方法无法充分利用目标的多级特征来提取丰富的语义信息,仅依靠固定尺寸特征识别伪装目标.为解决这一问题,本文提出了一种基于多尺度特征融合交互的伪装目标检测网络.该网络包含两个创新设计:多尺度特征感知模块和双阶段邻级交互模块.前者旨在通过结合多尺度特征的方式充分捕获复杂场景中丰富的局部-全局场景对比信息.后者则是整合来自相邻层的特征以利用跨层相关性将有价值的上下文信息从编码器传输到解码器网络.本文在CHAMELEON、CAMO-Test、COD10K-Test这3个公共数据集上对提出的方法进行了评测并与当前的主流方法对比.实验结果表明,本文方法的性能超越了当前的主流方法,在各项指标上达到了优异的性能水平. 展开更多
关键词 伪装目标检测 多尺度特征提取 跨级特征融合 深度学习
下载PDF
基于多层次融合的弱监督目标检测网络
7
作者 曹环 陈曾平 《模式识别与人工智能》 EI CSCD 北大核心 2024年第5期424-434,共11页
由于缺少精确的边界框注释,弱监督目标检测器依赖预训练图像分类模型对候选区域进行分类.然而,预训练模型通常对具有鉴别性的区域而非完整的目标产生高响应,导致局部主导、实例丢失和非紧密框等问题.为此,文中提出基于多层次融合的弱监... 由于缺少精确的边界框注释,弱监督目标检测器依赖预训练图像分类模型对候选区域进行分类.然而,预训练模型通常对具有鉴别性的区域而非完整的目标产生高响应,导致局部主导、实例丢失和非紧密框等问题.为此,文中提出基于多层次融合的弱监督目标检测网络,从增强对弱鉴别性空间特征的学习、类内样本特征丰富性和可信伪标签权重的角度提升检测性能.首先,幂池化层利用幂函数加权融合邻域内的激活值,减少弱鉴别性特征的信息损失.其次,特征混合方法随机融合候选区域的特征向量,丰富训练样本特征的多样性.最后,基于置信度的样本重加权策略融合预测值和伪标签的置信度,调节伪标签对训练的影响.在3个基准数据集上的实验表明文中网络性能较优. 展开更多
关键词 目标检测 弱监督学习 多层次融合 深度网络
下载PDF
基于视觉传达技术的激光图像多级融合方法研究
8
作者 宁晓蕾 张思斯 《激光杂志》 CAS 北大核心 2024年第4期141-147,共7页
设计了基于视觉传达技术的激光图像多级融合方法,以获得突出的视觉传达效果。首先采用改进单尺度Retinex算法提取原始激光图的反射图像,并通过高斯-拉普拉斯算法的重构获得的多尺度彩色图像,实现原始激光图像的增强,然后采用深度堆叠卷... 设计了基于视觉传达技术的激光图像多级融合方法,以获得突出的视觉传达效果。首先采用改进单尺度Retinex算法提取原始激光图的反射图像,并通过高斯-拉普拉斯算法的重构获得的多尺度彩色图像,实现原始激光图像的增强,然后采用深度堆叠卷积神经网络对获得高、低频图像,并依据最大局部方差融高频图像,根据匹配度与阈值的对比融合低频图像,最后实验结果表明:堆叠CNN数量为4时,融合后的激光图像视觉传达效果最优,该方法增强后的激光图像局部细节信息丰富、色彩饱满度好,融合图像的图像最大灰度值频率仅为0.015。 展开更多
关键词 视觉传达技术 激光图像 多级融合 单尺度Retinex 深度堆叠卷积神经网络 融合规则
下载PDF
基于多层级语言特征融合的中文文本可读性分级模型
9
作者 谭可人 兰韵诗 +1 位作者 张杨 丁安琪 《中文信息学报》 CSCD 北大核心 2024年第5期41-52,共12页
中文文本可读性分级任务的目标是将中文文本按照其可读性划分到相应的难度等级。近年来研究表明,语言特征与深度语义特征在表征文章难度上体现出互补性。但已有的工作仅对两类特征进行浅层融合,尚未考虑将语言特征和深度模型进行深层、... 中文文本可读性分级任务的目标是将中文文本按照其可读性划分到相应的难度等级。近年来研究表明,语言特征与深度语义特征在表征文章难度上体现出互补性。但已有的工作仅对两类特征进行浅层融合,尚未考虑将语言特征和深度模型进行深层、多层级融合。因此,该文在基于BERT的传统文本可读性分级模型的基础上,设计多层级语言特征融合方法,考虑到不同语言特征和网络层结构的交互,将汉字、词汇和语法的语言特征与模型的嵌入层和自注意力层进行融合。实验结果显示,该文的方法在中文文本可读性分级任务上的效果超过了所有基线模型,并在测试集上达到94.2%的准确率。 展开更多
关键词 中文文本可读性分级 多层级特征融合 深度模型
下载PDF
多层次深度网络融合人脸识别算法 被引量:14
10
作者 胡正平 何薇 +1 位作者 王蒙 孙哲 《模式识别与人工智能》 EI CSCD 北大核心 2017年第5期448-455,共8页
深度学习模型可以获得更具有鉴别力的人脸特征,提高人脸识别性能.因此,文中结合深度学习思想,提出多层次深度网络融合特征提取模型.在深度子空间基础上,采用"卷积-池化"网络结构,在降低特征维度的同时保留图像纹理信息,并且... 深度学习模型可以获得更具有鉴别力的人脸特征,提高人脸识别性能.因此,文中结合深度学习思想,提出多层次深度网络融合特征提取模型.在深度子空间基础上,采用"卷积-池化"网络结构,在降低特征维度的同时保留图像纹理信息,并且获得局部转换鲁棒性.同时,利用人脸标定算法获得人脸特征点,并以此划分人脸区域为5个局部人脸块.基于多层次分类策略,利用全局人脸训练全局网络,完成测试样本预分类.利用局部人脸块训练局部网络,在候选类别中完成最终分类.实验表明,结合局部特征与全局特征的模型可以取得较好的识别率,对光照、表情、姿态,遮挡等影响因素具有较好的鲁棒性,并且加入池化层及两步判别的算法可以有效提高识别率. 展开更多
关键词 深度学习 子空间 池化 多层次融合
下载PDF
大数据时代信息技术与高等教育深度融合的思考 被引量:28
11
作者 付岩 张建勋 《中国轻工教育》 2014年第4期9-11,18,共4页
教育信息化是实现信息技术与高等教育深度融合的现实语境,也是实现教育现代化的战略选择。文章首先分析了大数据时代的特点及大数据引发的教育变革,明确了大数据时代信息技术与高等教育深度融合的内涵,指出了当前高等教育信息化推进过... 教育信息化是实现信息技术与高等教育深度融合的现实语境,也是实现教育现代化的战略选择。文章首先分析了大数据时代的特点及大数据引发的教育变革,明确了大数据时代信息技术与高等教育深度融合的内涵,指出了当前高等教育信息化推进过程中存在的问题。最后从教学理念、教学环境、教学资源、教学应用、组织机制创新等方面给出大数据时代信息技术与高等教育深度融合的路径选择。 展开更多
关键词 大数据 信息技术 高等教育 深度融合
下载PDF
轴承故障的多源异构数据特征级融合诊断方法 被引量:5
12
作者 徐济宣 马辉 冯小凯 《机械设计与制造》 北大核心 2021年第9期150-154,159,共6页
为了实现轴承多源异构故障数据的特征融合,达到提高故障诊断精度的目的,提出了基于深度神经网络的多源故障特征融合方法。介绍了堆叠自编码器和卷积神经网络原理;使用堆叠自编码器提取了一维振动数据的故障特征,使用卷积神经网络提取了... 为了实现轴承多源异构故障数据的特征融合,达到提高故障诊断精度的目的,提出了基于深度神经网络的多源故障特征融合方法。介绍了堆叠自编码器和卷积神经网络原理;使用堆叠自编码器提取了一维振动数据的故障特征,使用卷积神经网络提取了二维图像数据的故障特征;为了充分发挥多源异构故障数据的关联性和互补性,使用深度神经网络将一维数据特征和二维数据特征进行交替优化和融合,提取更加能够反映故障特性的隐藏融合特征。以凯斯西储大学轴承故障数据为基础设计了三组实验,由实验结果可以看出,基于融合特征的故障诊断精度比单独使用一维数据特征或二维数据特征的诊断精度高10%以上,充分证明了基于多源异构特征融合故障诊断方法的有效性。 展开更多
关键词 轴承故障诊断 多源异构数据 特征级融合 深度神经网络
下载PDF
卷积神经网络低层特征辅助的图像实例分割方法 被引量:7
13
作者 樊玮 刘挺 +2 位作者 黄睿 郭青 张宝 《计算机科学》 CSCD 北大核心 2020年第11期186-191,共6页
流行的实例分割网络Mask R-CNN在进行实例分割时,存在目标分割边界和分割轮廓粗糙的问题,导致分割精度低。针对此问题,提出在Mask R-CNN分割分支中引入网络的低层卷积特征进行高精度的实例分割方法。首先从特征提取网络中选择特征,通过... 流行的实例分割网络Mask R-CNN在进行实例分割时,存在目标分割边界和分割轮廓粗糙的问题,导致分割精度低。针对此问题,提出在Mask R-CNN分割分支中引入网络的低层卷积特征进行高精度的实例分割方法。首先从特征提取网络中选择特征,通过插值算法将其缩放至固定尺度(输入图像的1/8)作为低层特征;然后通过RoI对齐操作提取当前待分割目标的特征后与原始的Mask R-CNN的分割分支对应目标的特征进行拼接,并将其作为精细化目标分割的特征。低层网络特征引入了更多的低级纹理和轮廓信息,可以有效地提高物体的分割精度。在COCO2017数据集上,所提方法使用ResNet-101-FPN作为特征提取网络得到的分割结果的平均准确度(AP)相对于Mask R-CNN提高了1.2%。实验结果表明,所提方法在使用不同特征提取网络时具有较好的鲁棒性和有效性。 展开更多
关键词 深度学习 深度神经网络 实例分割 特征融合 低层特征
下载PDF
多尺度特征提取和多级别特征融合的显著性目标检测方法 被引量:7
14
作者 黎玲利 孟令兵 李金宝 《工程科学与技术》 EI CAS CSCD 北大核心 2021年第1期170-177,共8页
显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征... 显著性目标检测已经被广泛应用到图像检索、图像分割、行人重识别等领域。目前主流的显著性目标检测方法通常采用短连接加权的方式融合多级别特征信息,这种方式无法精准有效地控制信息流的传递。而且,现有的检测方法通常采用单一的特征检测,导致显著性目标区域与背景的边界不连续、易模糊。因此,本文提出一种多尺度特征提取和多级别特征融合的显著性目标检测方法。首先,利用不同扩张率的空洞卷积获取多尺度的上下文信息,弥补单一特征检测带来的不足。其次,提出一个多级别特征融合模块,该模块有效地利用浅层特征信息、深层特征信息和全局上下文特征信息之间的分布特性进行融合,不仅可以抑制噪声的传递,而且可以更有效地恢复显著性目标的空间细节结构信息。同时构建一个简洁的注意力模块,该模块有效保留特征图融合后的通道信息。本文对综合指标、平均绝对误差、结构化度量、精确率-召回率曲线和F-measure曲线进行了实验评估,在5个公开的数据集上进行的实验结果表明:相比于其他13种主流的检测方法,本文方法在不同的评估指标上均有明显的提升,在4个数据集上的综合指标和结构化度量指标均超过其他方法;并且,本文方法的可视化检测的显著图边缘轮廓连续性更好,空间结构细节信息更清晰。 展开更多
关键词 显著性检测 多尺度特征提取 多级别特征融合 显著图 深度学习
下载PDF
基于深度学习的红外与可见光决策级融合检测(英文) 被引量:13
15
作者 唐聪 凌永顺(指导) +2 位作者 杨华 杨星 路远 《红外与激光工程》 EI CSCD 北大核心 2019年第6期446-460,共15页
提出了一种基于深度学习的红外与可见光决策级融合检测方法。首先,提出了一种介于深度学习模型之间的参数传递模型,进而从基于深度学习的可见光物体检测模型上抽取了用于红外物体检测的预训练模型,并在课题组实地采集的红外数据集上进行... 提出了一种基于深度学习的红外与可见光决策级融合检测方法。首先,提出了一种介于深度学习模型之间的参数传递模型,进而从基于深度学习的可见光物体检测模型上抽取了用于红外物体检测的预训练模型,并在课题组实地采集的红外数据集上进行fine-tuning,从而得到基于深度学习的红外物体检测模型。在此基础上,提出了一种基于深度学习的红外与可见光决策级融合检测模型,并对模型设计、图像配准、决策级融合过程进行了详细地阐述。最后,进行了白天和傍晚条件下基于深度学习的单波段检测实验和双波段融合检测实验。定性分析上,由于波段之间的信息互补性,相比于单波段物体检测,双波段融合物体检测在检测结果上具有更高的置信度和更精确的物体框;定量分析上,白天时,双波段融合检测的mAP为86.0%,相比于红外检测和可见光检测分别提高了9.9%和5.3%;傍晚时,双波段融合检测的mAP为89.4%,相比于红外检测和可见光检测分别提高了3.1%和14.4%。实验结果表明:基于深度学习的双波段融合检测方法相比于单波段检测方法具有更好的检测性能和更强的鲁棒性,同时也验证了所提出方法的有效性。 展开更多
关键词 物体检测 决策级融合 双波段 深度学习
下载PDF
上海水文高程基准控制联网测量深度融合分析
16
作者 康明 《测绘与空间地理信息》 2022年第5期212-217,共6页
通过分析上海水文高程基准控制的建设、水文站网纳入上海市水准网联测,梳理了以往技术措施上的不足,阐述对提高水文高程基准的精度、稳定性的思考和技术路线设计。
关键词 上海市水准网 水文高程基准 联网测量 路线深度融合 水位比降
下载PDF
一种注意力机制的多波段图像特征级融合方法 被引量:15
17
作者 杨晓莉 蔺素珍 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第1期120-127,共8页
针对多波段同步融合图像普遍存在的清晰度不高、图像细节不丰富的问题,提出一种基于注意力机制生成对抗网络的图像特征级融合方法。首先,利用多波段特征图与其均值的差值构建注意力权重图,通过特征图与注意力权重图的点乘和相加获得特... 针对多波段同步融合图像普遍存在的清晰度不高、图像细节不丰富的问题,提出一种基于注意力机制生成对抗网络的图像特征级融合方法。首先,利用多波段特征图与其均值的差值构建注意力权重图,通过特征图与注意力权重图的点乘和相加获得特征增强图,以此构建特征增强模块;其次,设计特征级融合模块,将多波段特征增强图连接,通过归一化、上采样、卷积等操作重构融合图像;最后,将特征增强模块和特征融合模块级联建立生成器,并以VGG-16作为判别器构建生成对抗网络,以实现多波段图像端到端融合。实验结果表明,与当前经典的融合方法相比,所提出方法的平均梯度最为突出,验证了该方法的有效性。 展开更多
关键词 图像融合 深度学习 多波段图像 特征级融合 注意力机制 生成对抗网络
下载PDF
基于异构数据特征级融合的多任务暂态稳定评估 被引量:6
18
作者 钱倍奇 陈谦 +3 位作者 张政伟 刘明洋 王苏颖 牛应灏 《电力系统自动化》 EI CSCD 北大核心 2023年第9期118-128,共11页
考虑到基于深度学习的暂态稳定评估方法对电力系统输入数据的描述不够全面,异构数据常被忽略,且许多特征信息无法有效融合,为充分利用电力系统各类异构数据以提高模型的精确度和算法性能,提出了一种异构数据特征级融合的深度学习方法。... 考虑到基于深度学习的暂态稳定评估方法对电力系统输入数据的描述不够全面,异构数据常被忽略,且许多特征信息无法有效融合,为充分利用电力系统各类异构数据以提高模型的精确度和算法性能,提出了一种异构数据特征级融合的深度学习方法。首先,利用多层感知机、图卷积网络、门控循环单元分别对静态多变量数据、拓扑图域数据、时序多变量数据进行特征提取;然后,采用张量融合方法对所提取特征进行特征级融合,并将展平的融合特征输入共享层,利用基于同方差不确定性的多任务学习方法,同时实现了暂态稳定判别与暂态稳定裕度预测。在此基础上,建立了暂态稳定评估模型,并对所提方法的性能进行了评估。最后,采用新英格兰10机39节点系统进行仿真、训练与验证,结果表明所提方法能有效提升评估的准确性与鲁棒性。 展开更多
关键词 暂态稳定评估 异构数据 深度学习 特征级融合 自适应多任务学习
下载PDF
基于表情及姿态融合的情绪识别 被引量:12
19
作者 文虹茜 卿粼波 +1 位作者 晋儒龙 王露 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第4期81-86,共6页
情绪识别指在使计算机拥有能够感知和分析人类情绪和意图的能力,从而在娱乐、教育、医疗和公共安全等领域发挥作用.与直观的面部表情相比,身体姿态在情绪识别方面的作用总是被低估.针对公共空间个体人脸分辨率较低、表情识别精度不高的... 情绪识别指在使计算机拥有能够感知和分析人类情绪和意图的能力,从而在娱乐、教育、医疗和公共安全等领域发挥作用.与直观的面部表情相比,身体姿态在情绪识别方面的作用总是被低估.针对公共空间个体人脸分辨率较低、表情识别精度不高的问题,提出了融合面部表情和身体姿态的情绪识别方法.首先,对视频数据进行预处理获得表情通道和姿态通道的输入序列;然后,使用深度学习的方法分别提取表情和姿态的情绪特征;最后,在决策层进行融合和分类.构建了基于视频的公共空间个体情绪数据集(SCU-FABE),在此基础上,结合姿态情绪识别数据增强,实现了公共空间个体情绪的有效识别.实验结果表明,表情和姿态情绪识别取得了94.698%和88.024%的平均识别率;融合情绪识别平均识别率为95.766%,有效融合了面部表情和身体姿态表达的情绪信息,在真实场景视频数据中具有良好的泛化能力和适用性. 展开更多
关键词 深度学习 情绪识别 决策层融合 面部表情 身体姿态
下载PDF
人体动作识别的特征级融合LSTM-CNN方法研究 被引量:8
20
作者 杨万鹏 李擎 雷明 《电子测量技术》 北大核心 2021年第17期173-180,共8页
近年来,深度学习方法在人体动作识别有着良好的表现,其利用陀螺仪和加速度计等可穿戴传感器获得的时间序列数据,经过预处理和数据级融合之后进行训练分类。针对数据级融合方法对多传感器的识别有一定局限性的问题,提出了一种特征级融合... 近年来,深度学习方法在人体动作识别有着良好的表现,其利用陀螺仪和加速度计等可穿戴传感器获得的时间序列数据,经过预处理和数据级融合之后进行训练分类。针对数据级融合方法对多传感器的识别有一定局限性的问题,提出了一种特征级融合的LSTM和CNN方法。该方法将独立的传感器数据依次接入到LSTM层和卷积组件层用于特征提取,之后汇聚起多传感器的特征再进行动作分类。该方法在3个公开数据集UCI-HAR、PAMAP2和OPPORTUNITY上分别取得的平均F1分数为96.06%、96.17%和94.44%。实验结果表明,所提出的方法在多传感器识别人体动作上有较好的精度。 展开更多
关键词 人体动作识别 特征级融合 深度学习 多传感器
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部