The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to inve...The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to investigate the mechanical properties of marble material samples taken from the deep diversion tunnels of Jinping II Hydropower Station. The stress-strain relationship, failure characteristics and strength criterion are compared and analyzed based on the experiment results. The results show: in the loading and unloading test, peak strength, lateral strain, axial strain and plastic deformation increase significantly as the confining pressure increases. Lateral strain increased significantly and obvious lateral dilatancy can be observed to the change of confining pressure; The fracture mode is mainly the single shear fracture for the triaxial compression test and post-peak test, angle between the failure surface and the ends of the rock material becomes smaller as the confining pressure increases. Hock-Brown strength criterion reflects the strength characteristics of marble material under two different unloading conditions, and has some supplementary effects to the rock material of mechanical field.展开更多
Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the...Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.展开更多
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the...Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.展开更多
With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological...With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological disasters, such as rock burst, pressure bumping, large deformation of surrounding rock, brittle-ductile transition of rock and zonal disintegration of rock mass, which occur frequently in deep underground engineering rock mass. The impact load caused by collision, explosion, extrusion and outburst is the root cause of the dynamic instability of the deep rock mass. What should be emphasized is that high in-situ stress and blasting excavation disturbance complicate disaster developing mechanism of deep underground engineering rock mass and sharply increase the difficulty of controlling disaster. This paper is aimed at the research status and development trend, of which dynamic characteristics of deep high stress rock mass and its damage and failure effect each other under impact, and conduct analysis, in the later stage where I would discuss how to carry out the response law of the deep high-stress rock mass under the impact load and the mechanism of catastrophe developing, which is of great significance to build a model of instability and fracture evolution about deep rock mass under shock disturbance and to maintain its safety and stability.展开更多
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subject...Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.展开更多
Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock t...Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock temperature, mining operations and climatic conditions. A breakdown of the various heat sources is outlined, for an underground mine producing 3500 tonnes per day of broken rock, taking into consideration the latent and sensible portions of that heat to properly assess the wet bulb global temperature. The resulting thermal loads indicate that cooling efforts would be needed both at surface and underground to maintain the temperature underground within the legal threshold. In winter the air might also have to be heated at surface and cooled underground, to ensure that icing does not occur in the inlet ventilation shaft-the main reason why coolin~ cannot be focussed solely at surface.展开更多
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly aff...There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.展开更多
Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, th...Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.展开更多
To study the tensile mechanical properties of constant resistance bolts, the RFPA(Rock Failure Process Analysis) statics software is used to perform a uniaxial tensile test on a constant resistance bolt. The numerical...To study the tensile mechanical properties of constant resistance bolts, the RFPA(Rock Failure Process Analysis) statics software is used to perform a uniaxial tensile test on a constant resistance bolt. The numerical test results show that the plastic strain value is 12 times the magnitude of the elastic strain. During plastic deformation, the fluctuation in the stress magnitude is relatively stable, indicating that the bolt has good constant resistance characteristics. The numerical test results are in good agreement with the laboratory test results of M.C. He, and the accuracy and reliability of the numerical test method are verified. Therefore, the RFPA software with coupled static-dynamic loading is further adopted to study the supporting effects of traditional bolts and constant resistance bolts under coupled staticdynamic loading. The numerical comparison of the test results show that the constant resistance bolts can effectively control the deformation amount and rate of the laneway surrounding rock, reduce the total and rate of increase in the accumulated acoustic emissions,decrease the stress on the units in the model and protect the stability of the laneway. This paper verifies that a constant resistance bolt has better impact resistance mechanical properties than those of a traditional bolt and provides an effective way to control rock burst and soft rock that is prone to large deformation damage.展开更多
针对大数据环境下并行深度森林算法中存在不相关及冗余特征过多、多粒度扫描不平衡、分类性能不足以及并行化效率低等问题,提出了基于互信息和融合加权的并行深度森林算法(parallel deep forest algorithm based on mutual information ...针对大数据环境下并行深度森林算法中存在不相关及冗余特征过多、多粒度扫描不平衡、分类性能不足以及并行化效率低等问题,提出了基于互信息和融合加权的并行深度森林算法(parallel deep forest algorithm based on mutual information and mixed weighting,PDF-MIMW)。首先,在特征降维阶段提出了基于互信息的特征提取策略(feature extraction strategy based on mutual information,FE-MI),结合特征重要性、交互性和冗余性度量过滤原始特征,剔除过多的不相关和冗余特征;接着,在多粒度扫描阶段提出了基于填充的改进多粒度扫描策略(improved multi-granularity scanning strategy based on padding,IMGS-P),对精简后的特征进行填充并对窗口扫描后的子序列进行随机采样,保证多粒度扫描的平衡;其次,在级联森林构建阶段提出了并行子森林构建策略(sub-forest construction strategy based on mixed weighting,SFC-MW),结合Spark框架并行构建加权子森林,提升模型的分类性能;最后,在类向量合并阶段提出基于混合粒子群算法的负载均衡策略(load balancing strategy based on hybrid particle swarm optimization algorithm,LB-HPSO),优化Spark框架中任务节点的负载分配,降低类向量合并时的等待时长,提高模型的并行化效率。实验表明,PDF-MIMW算法的分类效果更佳,同时在大数据环境下的训练效率更高。展开更多
Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed h...Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed herein include mechanical and natural cooling systems, ranging from mechanical chillers to seasonal thermal storages. The economic and operating parameters for each technology were estimated and evaluated according to the mine's energy loads. Including consideration of any combined heat and power benefits of the technology, cooling tower requirements, etc., the resulting cost of implementation for each technology could be ranked. This showed that the natural thermal storage systems and conventional chillers were the most cost-effective, mainly since the natural systems had very low operating cost and the chillers had relatively low capital costs.展开更多
Semi-deep foundations are a remarkable solution in conditions where the soil beneath the foundation is loose to a great depth and there is no possible way to use any way of soil improvement and applying piles would no...Semi-deep foundations are a remarkable solution in conditions where the soil beneath the foundation is loose to a great depth and there is no possible way to use any way of soil improvement and applying piles would not be a logical way considering their cost and time of enforcing. Skirted foundations are a type of semi-deep foundations that can penetrate to the soil up to two times of their breadth. Estimating bearing capacity of these foundations is a long geotechnical problem for engineers whether under absolute or combined loading because of their usage in offshore and onshore projects. For estimating the vertical bearing capacity of these foundations, series of finite element analyses were performed for a range of embedment ratios to investigate the effect of the length of the skirt. The foundation has been modelled with two different types of soil and the results validated with previous analytical, numerical and experimental researches. In addition, the bearing capacity of a skirted foundation under combined loading in V-H space has been analyzed by this approach and the 2-dimentional failure envelope has been presented.展开更多
基金Supported by National Natural Science Foundation of China(No.50974100)WHUT(NO.125106002)
文摘The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to investigate the mechanical properties of marble material samples taken from the deep diversion tunnels of Jinping II Hydropower Station. The stress-strain relationship, failure characteristics and strength criterion are compared and analyzed based on the experiment results. The results show: in the loading and unloading test, peak strength, lateral strain, axial strain and plastic deformation increase significantly as the confining pressure increases. Lateral strain increased significantly and obvious lateral dilatancy can be observed to the change of confining pressure; The fracture mode is mainly the single shear fracture for the triaxial compression test and post-peak test, angle between the failure surface and the ends of the rock material becomes smaller as the confining pressure increases. Hock-Brown strength criterion reflects the strength characteristics of marble material under two different unloading conditions, and has some supplementary effects to the rock material of mechanical field.
基金Supported by the National Natural Science Foundation of China (50908048)the Priority Academic Program Development (PAPD) Project of JiangsuHigher Education Institutions
文摘Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.
基金jointly supported by the State Key Research Development Program of China (Grant No.2016YFC0600706)the National Natural Science Foundation of China (Grant Nos.41630642 and 11472311)
文摘Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.
文摘With the exploitation of resources expanded to deep, the geological environment which is “three tenors one disturbance” of rock mass in great depth has been more complex, resulting in some new engineering geological disasters, such as rock burst, pressure bumping, large deformation of surrounding rock, brittle-ductile transition of rock and zonal disintegration of rock mass, which occur frequently in deep underground engineering rock mass. The impact load caused by collision, explosion, extrusion and outburst is the root cause of the dynamic instability of the deep rock mass. What should be emphasized is that high in-situ stress and blasting excavation disturbance complicate disaster developing mechanism of deep underground engineering rock mass and sharply increase the difficulty of controlling disaster. This paper is aimed at the research status and development trend, of which dynamic characteristics of deep high stress rock mass and its damage and failure effect each other under impact, and conduct analysis, in the later stage where I would discuss how to carry out the response law of the deep high-stress rock mass under the impact load and the mechanism of catastrophe developing, which is of great significance to build a model of instability and fracture evolution about deep rock mass under shock disturbance and to maintain its safety and stability.
基金the Thailand Research Fund (TRF) for their financial support to this study
文摘Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
基金CEMI (Centre for Excellence in Mining Innovation) for their funding to support this research
文摘Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining depth and its operation. Part I of this research focusses on the thermal energy loads in deep mines as a result of the virgin rock temperature, mining operations and climatic conditions. A breakdown of the various heat sources is outlined, for an underground mine producing 3500 tonnes per day of broken rock, taking into consideration the latent and sensible portions of that heat to properly assess the wet bulb global temperature. The resulting thermal loads indicate that cooling efforts would be needed both at surface and underground to maintain the temperature underground within the legal threshold. In winter the air might also have to be heated at surface and cooled underground, to ensure that icing does not occur in the inlet ventilation shaft-the main reason why coolin~ cannot be focussed solely at surface.
基金financially supported by the Major Science and Technology Project of MOT,China(Grant Nos.2013 328 224 070 and 2014 328 224 040)the National Natural Science Foundation of China(Grant No.51409134)
文摘There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.
基金provided by the National Natural Science Foundation of China(No.51234005)National Basic Research Program of China under Grant(No.2010CB226802)Fundamental Research Funds for the Central Universities(No.2010QZ06)
文摘Aiming at the surrounding rock control problem of mining and preparation entries in Xingdong mine with large mining depth, and the comprehensive control countermeasures including high pre-stress cable truss system, this study put forward powerful anchor support system and anchor cable adaption technology to surrounding rock deformation. Furthermore, the control measures possess the supporting performance with ‘‘primary rigid-following flexible-new rigid, and primary resistance-following yield-new resistance'', which suits deep roadway surrounding rock control. The mechanical model of truss anchor supporting roof beams was established, and the inverted arch deflection produced by the cable pre-stress with stress increment effect and roof beam deflection were obtained. And then the system working mechanism was illustrated. Finally, the surrounding rock support parameters were determined by means of comprehensive methods, and put into practice. The results show that surrounding rock deformation realized secondary stability after three months. The roadway sides convergence value was less than 245mm, and roof subsidence was less than 124mm. In addition, there was no expansion and renovation during service period.
基金supported by the Chinese National Natural Science Foundation (Nos. 51627804, 41572249)the State Key Laboratory for GeoMechanics and Deep Underground Engineering, China University of Mining & Technology (No. SKLGDUEK1825)
文摘To study the tensile mechanical properties of constant resistance bolts, the RFPA(Rock Failure Process Analysis) statics software is used to perform a uniaxial tensile test on a constant resistance bolt. The numerical test results show that the plastic strain value is 12 times the magnitude of the elastic strain. During plastic deformation, the fluctuation in the stress magnitude is relatively stable, indicating that the bolt has good constant resistance characteristics. The numerical test results are in good agreement with the laboratory test results of M.C. He, and the accuracy and reliability of the numerical test method are verified. Therefore, the RFPA software with coupled static-dynamic loading is further adopted to study the supporting effects of traditional bolts and constant resistance bolts under coupled staticdynamic loading. The numerical comparison of the test results show that the constant resistance bolts can effectively control the deformation amount and rate of the laneway surrounding rock, reduce the total and rate of increase in the accumulated acoustic emissions,decrease the stress on the units in the model and protect the stability of the laneway. This paper verifies that a constant resistance bolt has better impact resistance mechanical properties than those of a traditional bolt and provides an effective way to control rock burst and soft rock that is prone to large deformation damage.
文摘针对大数据环境下并行深度森林算法中存在不相关及冗余特征过多、多粒度扫描不平衡、分类性能不足以及并行化效率低等问题,提出了基于互信息和融合加权的并行深度森林算法(parallel deep forest algorithm based on mutual information and mixed weighting,PDF-MIMW)。首先,在特征降维阶段提出了基于互信息的特征提取策略(feature extraction strategy based on mutual information,FE-MI),结合特征重要性、交互性和冗余性度量过滤原始特征,剔除过多的不相关和冗余特征;接着,在多粒度扫描阶段提出了基于填充的改进多粒度扫描策略(improved multi-granularity scanning strategy based on padding,IMGS-P),对精简后的特征进行填充并对窗口扫描后的子序列进行随机采样,保证多粒度扫描的平衡;其次,在级联森林构建阶段提出了并行子森林构建策略(sub-forest construction strategy based on mixed weighting,SFC-MW),结合Spark框架并行构建加权子森林,提升模型的分类性能;最后,在类向量合并阶段提出基于混合粒子群算法的负载均衡策略(load balancing strategy based on hybrid particle swarm optimization algorithm,LB-HPSO),优化Spark框架中任务节点的负载分配,降低类向量合并时的等待时长,提高模型的并行化效率。实验表明,PDF-MIMW算法的分类效果更佳,同时在大数据环境下的训练效率更高。
基金CEMI (Centre for Excellence in Mining Innovation) for their funding to support this research
文摘Cooling energy needs, for mines in Northern Ontario, are mainly driven by the mining cooling technologies available and the cost to implement them in a 2500 m deep underground mine. The cooling technologies reviewed herein include mechanical and natural cooling systems, ranging from mechanical chillers to seasonal thermal storages. The economic and operating parameters for each technology were estimated and evaluated according to the mine's energy loads. Including consideration of any combined heat and power benefits of the technology, cooling tower requirements, etc., the resulting cost of implementation for each technology could be ranked. This showed that the natural thermal storage systems and conventional chillers were the most cost-effective, mainly since the natural systems had very low operating cost and the chillers had relatively low capital costs.
文摘Semi-deep foundations are a remarkable solution in conditions where the soil beneath the foundation is loose to a great depth and there is no possible way to use any way of soil improvement and applying piles would not be a logical way considering their cost and time of enforcing. Skirted foundations are a type of semi-deep foundations that can penetrate to the soil up to two times of their breadth. Estimating bearing capacity of these foundations is a long geotechnical problem for engineers whether under absolute or combined loading because of their usage in offshore and onshore projects. For estimating the vertical bearing capacity of these foundations, series of finite element analyses were performed for a range of embedment ratios to investigate the effect of the length of the skirt. The foundation has been modelled with two different types of soil and the results validated with previous analytical, numerical and experimental researches. In addition, the bearing capacity of a skirted foundation under combined loading in V-H space has been analyzed by this approach and the 2-dimentional failure envelope has been presented.