Deep metric learning(DML)has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks.Existing deep metric learning methods focus on designi...Deep metric learning(DML)has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks.Existing deep metric learning methods focus on designing pair-based distance loss to decrease intra-class distance while increasing interclass distance.However,these methods fail to preserve the geometric structure of data in the embedding space,which leads to the spatial structure shift across mini-batches and may slow down the convergence of embedding learning.To alleviate these issues,by assuming that the input data is embedded in a lower-dimensional sub-manifold,we propose a novel deep Riemannian metric learning(DRML)framework that exploits the non-Euclidean geometric structural information.Considering that the curvature information of data measures how much the Riemannian(nonEuclidean)metric deviates from the Euclidean metric,we leverage geometry flow,which is called a geometric evolution equation,to characterize the relation between the Riemannian metric and its curvature.Our DRML not only regularizes the local neighborhoods connection of the embeddings at the hidden layer but also adapts the embeddings to preserve the geometric structure of the data.On several benchmark datasets,the proposed DRML outperforms all existing methods and these results demonstrate its effectiveness.展开更多
Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtim...Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtimes during each SCL re-decoding attempt to prevent the correct path from being eliminated.The candidate positions for applying the SP scheme are selected by a shifting metric based on the probability that the elimination occurs.However,the number of exponential/logarithm operations involved in the SCL-SP-ωdecoder grows linearly with the number of information bits and list size,which leads to high computational complexity.In this paper,we present a detailed analysis of the SCL-SP-ωdecoder in terms of the decoding performance and complexity,which unveils that the choice of the shifting metric is essential for improving the decoding performance and reducing the re-decoding attempts simultaneously.Then,we introduce a simplified metric derived from the path metric(PM)domain,and a custom-tailored deep learning(DL)network is further designed to enhance the efficiency of the proposed simplified metric.The proposed metrics are both free of transcendental functions and hence,are more hardware-friendly than the existing metrics.Simulation results show that the proposed DL-aided metric provides the best error correction performance as comparison with the state of the art.展开更多
Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids ...Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.展开更多
Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a cha...Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets.展开更多
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis app...Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis applications.This paper proposes a deep learning model for the medical image fusion process.This model depends on Convolutional Neural Network(CNN).The basic idea of the proposed model is to extract features from both CT and MR images.Then,an additional process is executed on the extracted features.After that,the fused feature map is reconstructed to obtain the resulting fused image.Finally,the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching(HM),Histogram Equalization(HE),fuzzy technique,fuzzy type,and Contrast Limited Histogram Equalization(CLAHE).The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality.Different realistic datasets of different modalities and diseases are tested and implemented.Also,real datasets are tested in the simulation analysis.展开更多
This research article proposes an automatic frame work for detectingCOVID -19 at the early stage using chest X-ray image. It is an undeniable factthat coronovirus is a serious disease but the early detection of the vi...This research article proposes an automatic frame work for detectingCOVID -19 at the early stage using chest X-ray image. It is an undeniable factthat coronovirus is a serious disease but the early detection of the virus presentin human bodies can save lives. In recent times, there are so many research solutions that have been presented for early detection, but there is still a lack in needof right and even rich technology for its early detection. The proposed deeplearning model analysis the pixels of every image and adjudges the presence ofvirus. The classifier is designed in such a way so that, it automatically detectsthe virus present in lungs using chest image. This approach uses an imagetexture analysis technique called granulometric mathematical model. Selectedfeatures are heuristically processed for optimization using novel multi scaling deep learning called light weight residual–atrous spatial pyramid pooling(LightRES-ASPP-Unet) Unet model. The proposed deep LightRES-ASPPUnet technique has a higher level of contracting solution by extracting majorlevel of image features. Moreover, the corona virus has been detected usinghigh resolution output. In the framework, atrous spatial pyramid pooling(ASPP) method is employed at its bottom level for incorporating the deepmulti scale features in to the discriminative mode. The architectural workingstarts from the selecting the features from the image using granulometricmathematical model and the selected features are optimized using LightRESASPP-Unet. ASPP in the analysis of images has performed better than theexisting Unet model. The proposed algorithm has achieved 99.6% of accuracyin detecting the virus at its early stage.展开更多
With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in pra...With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in practice.Therefore,distributed machine learning(DML) and semi-supervised learning methods which help solve these problems have been addressed in both academia and industry.In this paper,the semi-supervised learning method and the data parallelism DML framework are combined.The pseudo-label based local loss function for each distributed node is studied,and the stochastic gradient descent(SGD) based distributed parameter update principle is derived.A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted,and the CIFAR-10 dataset for target classification is used to evaluate the performance.Experimental results confirm the convergence and the accuracy of the model using the pseudo-label based semi-supervised learning in the DML framework.Given the proportion of the pseudo-label dataset is 20%,the accuracy of the model is over 90% when the value of local parameter update steps between two global aggregations is less than 5.Besides,fixing the global aggregations interval to 3,the model converges with acceptable performance degradation when the proportion of the pseudo-label dataset varies from 20% to 80%.展开更多
基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基...基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基于数据特征相关性和自适应差分隐私的深度学习方法(deep learning methods based on data feature Relevance and Adaptive Differential Privacy,RADP).首先,该方法利用逐层相关性传播算法在预训练模型上计算出原始数据集上每个特征的平均相关性;然后,使用基于信息熵的方法计算每个特征平均相关性的隐私度量,根据隐私度量对特征平均相关性自适应地添加拉普拉斯噪声;在此基础上,根据加噪保护后的每个特征平均相关性,合理分配隐私预算,自适应地对特征添加拉普拉斯噪声;最后,理论分析该方法(RADP)满足ε-差分隐私,并且兼顾安全性与可用性.同时,在三个真实数据集(MNIST,Fashion-MNIST,CIFAR-10)上的实验结果表明,RADP方法的准确率以及平均损失均优于AdLM(Adaptive Laplace Mechanism)方法、DPSGD(Differential Privacy with Stochastic Gradient Descent)方法和DPDLIGDO(Differentially Private Deep Learning with Iterative Gradient Descent Optimization)方法,并且RADP方法的稳定性仍能保持良好.展开更多
基金supported in part by the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the National Natural Science Foundation of China(61621003,62101136)+2 种基金Natural Science Foundation of Shanghai(21ZR1403600)Shanghai Municipal Science and Technology Major Project(2018SHZDZX01)ZJLab,and Shanghai Municipal of Science and Technology Project(20JC1419500)。
文摘Deep metric learning(DML)has achieved great results on visual understanding tasks by seamlessly integrating conventional metric learning with deep neural networks.Existing deep metric learning methods focus on designing pair-based distance loss to decrease intra-class distance while increasing interclass distance.However,these methods fail to preserve the geometric structure of data in the embedding space,which leads to the spatial structure shift across mini-batches and may slow down the convergence of embedding learning.To alleviate these issues,by assuming that the input data is embedded in a lower-dimensional sub-manifold,we propose a novel deep Riemannian metric learning(DRML)framework that exploits the non-Euclidean geometric structural information.Considering that the curvature information of data measures how much the Riemannian(nonEuclidean)metric deviates from the Euclidean metric,we leverage geometry flow,which is called a geometric evolution equation,to characterize the relation between the Riemannian metric and its curvature.Our DRML not only regularizes the local neighborhoods connection of the embeddings at the hidden layer but also adapts the embeddings to preserve the geometric structure of the data.On several benchmark datasets,the proposed DRML outperforms all existing methods and these results demonstrate its effectiveness.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFB1802303in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F010010。
文摘Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtimes during each SCL re-decoding attempt to prevent the correct path from being eliminated.The candidate positions for applying the SP scheme are selected by a shifting metric based on the probability that the elimination occurs.However,the number of exponential/logarithm operations involved in the SCL-SP-ωdecoder grows linearly with the number of information bits and list size,which leads to high computational complexity.In this paper,we present a detailed analysis of the SCL-SP-ωdecoder in terms of the decoding performance and complexity,which unveils that the choice of the shifting metric is essential for improving the decoding performance and reducing the re-decoding attempts simultaneously.Then,we introduce a simplified metric derived from the path metric(PM)domain,and a custom-tailored deep learning(DL)network is further designed to enhance the efficiency of the proposed simplified metric.The proposed metrics are both free of transcendental functions and hence,are more hardware-friendly than the existing metrics.Simulation results show that the proposed DL-aided metric provides the best error correction performance as comparison with the state of the art.
文摘Now a days,Remote Sensing(RS)techniques are used for earth observation and for detection of soil types with high accuracy and better reliability.This technique provides perspective view of spatial resolution and aids in instantaneous measurement of soil’s minerals and its characteristics.There are a few challenges that is present in soil classification using image enhancement such as,locating and plotting soil boundaries,slopes,hazardous areas,drainage condition,land use,vegetation etc.There are some traditional approaches which involves few drawbacks such as,manual involvement which results in inaccuracy due to human interference,time consuming,inconsistent prediction etc.To overcome these draw backs and to improve the predictive analysis of soil characteristics,we propose a Hybrid Deep Learning improved BAT optimization algorithm(HDIB)for soil classification using remote sensing hyperspectral features.In HDIB,we propose a spontaneous BAT optimization algorithm for feature extraction of both spectral-spatial features by choosing pure pixels from the Hyper Spectral(HS)image.Spectral-spatial vector as training illustrations is attained by merging spatial and spectral vector by means of priority stacking methodology.Then,a recurring Deep Learning(DL)Neural Network(NN)is used for classifying the HS images,considering the datasets of Pavia University,Salinas and Tamil Nadu Hill Scene,which in turn improves the reliability of classification.Finally,the performance of the proposed HDIB based soil classifier is compared and analyzed with existing methodologies like Single Layer Perceptron(SLP),Convolutional Neural Networks(CNN)and Deep Metric Learning(DML)and it shows an improved classification accuracy of 99.87%,98.34%and 99.9%for Tamil Nadu Hills dataset,Pavia University and Salinas scene datasets respectively.
文摘Weed is a plant that grows along with nearly allfield crops,including rice,wheat,cotton,millets and sugar cane,affecting crop yield and quality.Classification and accurate identification of all types of weeds is a challenging task for farmers in earlier stage of crop growth because of similarity.To address this issue,an efficient weed classification model is proposed with the Deep Convolutional Neural Network(CNN)that implements automatic feature extraction and performs complex feature learning for image classification.Throughout this work,weed images were trained using the proposed CNN model with evolutionary computing approach to classify the weeds based on the two publicly available weed datasets.The Tamil Nadu Agricultural University(TNAU)dataset used as afirst dataset that consists of 40 classes of weed images and the other dataset is from Indian Council of Agriculture Research–Directorate of Weed Research(ICAR-DWR)which contains 50 classes of weed images.An effective Particle Swarm Optimization(PSO)technique is applied in the proposed CNN to automa-tically evolve and improve its classification accuracy.The proposed model was evaluated and compared with pre-trained transfer learning models such as GoogLeNet,AlexNet,Residual neural Network(ResNet)and Visual Geometry Group Network(VGGNet)for weed classification.This work shows that the performance of the PSO assisted proposed CNN model is significantly improved the success rate by 98.58%for TNAU and 97.79%for ICAR-DWR weed datasets.
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
文摘Medical image fusion is considered the best method for obtaining one image with rich details for efficient medical diagnosis and therapy.Deep learning provides a high performance for several medical image analysis applications.This paper proposes a deep learning model for the medical image fusion process.This model depends on Convolutional Neural Network(CNN).The basic idea of the proposed model is to extract features from both CT and MR images.Then,an additional process is executed on the extracted features.After that,the fused feature map is reconstructed to obtain the resulting fused image.Finally,the quality of the resulting fused image is enhanced by various enhancement techniques such as Histogram Matching(HM),Histogram Equalization(HE),fuzzy technique,fuzzy type,and Contrast Limited Histogram Equalization(CLAHE).The performance of the proposed fusion-based CNN model is measured by various metrics of the fusion and enhancement quality.Different realistic datasets of different modalities and diseases are tested and implemented.Also,real datasets are tested in the simulation analysis.
文摘This research article proposes an automatic frame work for detectingCOVID -19 at the early stage using chest X-ray image. It is an undeniable factthat coronovirus is a serious disease but the early detection of the virus presentin human bodies can save lives. In recent times, there are so many research solutions that have been presented for early detection, but there is still a lack in needof right and even rich technology for its early detection. The proposed deeplearning model analysis the pixels of every image and adjudges the presence ofvirus. The classifier is designed in such a way so that, it automatically detectsthe virus present in lungs using chest image. This approach uses an imagetexture analysis technique called granulometric mathematical model. Selectedfeatures are heuristically processed for optimization using novel multi scaling deep learning called light weight residual–atrous spatial pyramid pooling(LightRES-ASPP-Unet) Unet model. The proposed deep LightRES-ASPPUnet technique has a higher level of contracting solution by extracting majorlevel of image features. Moreover, the corona virus has been detected usinghigh resolution output. In the framework, atrous spatial pyramid pooling(ASPP) method is employed at its bottom level for incorporating the deepmulti scale features in to the discriminative mode. The architectural workingstarts from the selecting the features from the image using granulometricmathematical model and the selected features are optimized using LightRESASPP-Unet. ASPP in the analysis of images has performed better than theexisting Unet model. The proposed algorithm has achieved 99.6% of accuracyin detecting the virus at its early stage.
基金Supported by the National Key R&D Program of China(No.2020YFC1807904)the Natural Science Foundation of Beijing Municipality(No.L192002)the National Natural Science Foundation of China(No.U1633115)。
文摘With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in practice.Therefore,distributed machine learning(DML) and semi-supervised learning methods which help solve these problems have been addressed in both academia and industry.In this paper,the semi-supervised learning method and the data parallelism DML framework are combined.The pseudo-label based local loss function for each distributed node is studied,and the stochastic gradient descent(SGD) based distributed parameter update principle is derived.A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted,and the CIFAR-10 dataset for target classification is used to evaluate the performance.Experimental results confirm the convergence and the accuracy of the model using the pseudo-label based semi-supervised learning in the DML framework.Given the proportion of the pseudo-label dataset is 20%,the accuracy of the model is over 90% when the value of local parameter update steps between two global aggregations is less than 5.Besides,fixing the global aggregations interval to 3,the model converges with acceptable performance degradation when the proportion of the pseudo-label dataset varies from 20% to 80%.
文摘基于差分隐私的深度学习隐私保护方法中,训练周期的长度以及隐私预算的分配方式直接制约着深度学习模型的效用.针对现有深度学习结合差分隐私的方法中模型训练周期有限、隐私预算分配不合理导致模型安全性与可用性差的问题,提出一种基于数据特征相关性和自适应差分隐私的深度学习方法(deep learning methods based on data feature Relevance and Adaptive Differential Privacy,RADP).首先,该方法利用逐层相关性传播算法在预训练模型上计算出原始数据集上每个特征的平均相关性;然后,使用基于信息熵的方法计算每个特征平均相关性的隐私度量,根据隐私度量对特征平均相关性自适应地添加拉普拉斯噪声;在此基础上,根据加噪保护后的每个特征平均相关性,合理分配隐私预算,自适应地对特征添加拉普拉斯噪声;最后,理论分析该方法(RADP)满足ε-差分隐私,并且兼顾安全性与可用性.同时,在三个真实数据集(MNIST,Fashion-MNIST,CIFAR-10)上的实验结果表明,RADP方法的准确率以及平均损失均优于AdLM(Adaptive Laplace Mechanism)方法、DPSGD(Differential Privacy with Stochastic Gradient Descent)方法和DPDLIGDO(Differentially Private Deep Learning with Iterative Gradient Descent Optimization)方法,并且RADP方法的稳定性仍能保持良好.