期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Challenges and new insights for exploitation of deep underground metal mineral resources 被引量:23
1
作者 Peng LI Mei-feng CAI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3478-3505,共28页
Long-term and continuous large-scale exploitation has increasingly exhausted shallow metal mineral resources,and deep mining has become inevitable.The current global status of deep mining of metal mineral resources wa... Long-term and continuous large-scale exploitation has increasingly exhausted shallow metal mineral resources,and deep mining has become inevitable.The current global status of deep mining of metal mineral resources was presented,a series of engineering challenges faced by deep mining were systematically analyzed,and some progress and future innovation focus in key engineering technologies,such as the prediction and prevention of rockburst,cooling techniques,rock support techniques,deep hoisting techniques,and several nontraditional deep mining techniques,were highlighted.Meanwhile,new insights into development strategies of deep mining technology were proposed.The integration of these forward-looking key innovative technologies will form the overall framework of an innovative technology system for the deep mining of metal minerals.This technology system will help to achieve safe,efficient,and green exploitation of deep underground metal mineral resources and ensure the sustainable development of the metal mining industry. 展开更多
关键词 deep metal mineral resources engineering challenges disaster control nontraditional mining technique sustainable development
下载PDF
Hydrodynamic Links between Shallow and Deep Mineralization Systems and Implications for Deep Mineral Exploration 被引量:9
2
作者 CHI Guoxiang XU Deru +5 位作者 XUE Chunji LI Zenghua Patrick LEDRU DENG Teng WANG Yumeng SONG Hao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第1期1-25,共25页
Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the ri... Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the risk in deep mineral exploration.One of the relatively poorly constrained but important factors is the hydrodynamics of mineralization.This paper reviews the principles of hydrodynamics of mineralization,especially the nature of relationships between mineralization and structures,and their applications to various types of mineralization systems in the context of hydrodynamic linkage between shallow and deep parts of the systems.Three categories of mineralization systems were examined,i.e.,magmatic-hydrothermal systems,structurally controlled hydrothermal systems with uncertain fluid sources,and hydrothermal systems associated with sedimentary basins.The implications for deep mineral exploration,including potentials for new mineral resources at depth,favorable locations for mineralization,as well as uncertainties,are discussed. 展开更多
关键词 HYDRODYNAMICS structural control of mineralization mineral systems shallow and deep mineralization deep mineral exploration
下载PDF
Quantitative Prediction for Deep Mineral Exploration 被引量:8
3
作者 赵鹏大 成秋明 夏庆霖 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期309-318,共10页
On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit format... On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment. 展开更多
关键词 mineral resources quantitative prediction deep mineral exploration second mineral exploration space
下载PDF
Deformation mechanism of roadways in deep soft rock at Hegang Xing’an Coal Mine 被引量:21
4
作者 Yang Xiaojie Pang Jiewen +4 位作者 Liu Dongming Liu Yang Tian Yihong Ma Jiao Li Shaohua 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期307-312,共6页
Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the ... Engineering geomechanics characteristics of roadways in deep soft rock at Hegang Xing'an Coal Mine were studied and the nature of clay minerals of roadway surrounding rock was analyzed. This paper is to solve the technical problems of high stress and the difficulty in supporting the coal mine, and provide a rule for the support design. Results show that mechanical deformation mechanisms of deep soft rock roadway at Xing'an Coal Mine is of ⅠABⅡABCⅢABCD type, consisting of molecular water absorption (the ⅠAB -type), the tectonic stress type + gravity deformation type + hydraulic type (the ⅡABC -type), and the ⅢABCD -type with fault, weak intercalation and bedding formation. According to the compound mechanical deformation mechanisms, the corresponding mechanical control measures and conversion technologies were proposed, and these technologies have been successfully applied in roadway supporting practice in deep soft rock at Xing'an Coal Mine with good effect. Xing'an Coal Mine has the deepest burial depth in China, with its overburden ranging from Mesozoic Jurassic coal-forming to now. The results of the research can be used as guidance in the design of roadway support in soft rock. 展开更多
关键词 deep Clay mineral Engineering soft rock type Deformation mechanics mechanism
下载PDF
Application of Transient Electromagnetic Method with Multi-Radiation Field Sources in Deep Edge Mineral Resources Exploration 被引量:2
5
作者 ZENG Youqiang ZENG Gaofu +3 位作者 HUANG Lishan LI Xiu GUO Jianlei WANG Jianchao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期99-101,共3页
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international... In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020). 展开更多
关键词 multiple radiation field sources exploration of deep mineral resources transient electromagnetic method
下载PDF
Deep gold mineralization features of Jiaojia metallogenic belt,Jiaodong gold Province:Based on the breakthrough of 3000 m exploration drilling 被引量:2
6
作者 Xue-feng Yu Da-peng Li +7 位作者 Jing-xiang Tian De-ping Yang Wei Shan Ke Geng Yu-xin Xiong Nai-jie Chi Peng-fei Wei Peng-rui Liu 《China Geology》 2020年第3期385-401,共17页
Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus ... Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation. 展开更多
关键词 Au deposit Alteration rock type Fracture zone 3000 m scientific drilling deep mineral exploration engineering Jiaojia metallogenic belt Shandong Province China
下载PDF
Some Challenges of Deep Mining 被引量:19
7
作者 Charles Fairhurst 《Engineering》 SCIE EI 2017年第4期527-537,共11页
An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through su... An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania. 展开更多
关键词 deep mining Rock discontinuities Synthetic rock mass Mineral resources Rock mechanics
下载PDF
Hydrophilic characteristics of soft rock in deep mines 被引量:2
8
作者 Guo Hongyun Li Bing +2 位作者 Zhang Yumei Wang Xinbo Zhang Feng 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第2期177-183,共7页
A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure... A series of water absorption tests on dried soft rock have been conducted by the intelligent testing system for water absorption tests in deep soft rock, including tests of water absorption with and without pres- sure. The results show that the water absorbing capacity of rock with a certain pressure is larger than that of rock without pressure: however, the relationship between the water absorbing percentage and the time can be expressed by w(t) = a(l - e^-bt). In hi-logarithmic coordinates, the hydrophilic relationship with time in tests with pressure could be characterized by linearity, while they present concave or convex in tests without pressure. Based on the hypothesis that each influential factor is irrelevant and they have a linear correlation with the water absorbing capacity, we calculated the weight coefficient of each factor according to experimental results under different conditions. The calculations demonstrate that the effec- tive porosity, content of smectite and kaolinite are all positively correlated with the water absorption capacity of rock; meanwhile, the fractal dimension of the effective pores presents a negative correlation with the water absorption capacity of rock. The water absorption capacity with pressure increases with increasing illite, chlorite and chlorite/smectite formation and a decrease in illite/smectite formation and the fractal dimension of the effective pores, while it is opposite in tests without pressure. The weight coefficient of smectite is smallest among positive factors, and the fractal dimension of the effective pores is the smallest amongst the negative factors. 展开更多
关键词 deep soft rock Water absorption tests Porosity Fractal dimension Clay minerals
下载PDF
Deep Mineralization Background and Metallogenic Regularity of the Tongling Ore District
9
作者 WAN Qiu DU Jianguo +3 位作者 YANG Bo LAN Xueyi XIAO Xiao SHI Ke 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1893-1908,共16页
Based on the geological conditions and characteristics of mineralization present,three-dimensional geological modelling is used in conjunction with previous deep research results,in order to discuss the process of dee... Based on the geological conditions and characteristics of mineralization present,three-dimensional geological modelling is used in conjunction with previous deep research results,in order to discuss the process of deep mineralization in the Tongling ore district.The structural analysis shows that surface deformation is strong,deep deformation is weak,the surface has mainly experienced brittle deformation,with the possibility of a large number of deep ductile deformations.There is a thrust nappe between the Tongling uplift and the Nanling basin,that is the boundary of the Tongling block,which has resulted in the southwest uplift of the Tongling block.Combined with the deep exploration data,the threedimensional shape of the main rock masses is interpreted,with three-layer structures in the deep magma chamber.The spatial distribution of magmatic rocks is mainly controlled by the structure.The movement of magmatic hydrothermal fluid is dominated by mesoscale seepage in the deep part and'dike'type upwelling in the shallow part.There is a certain coupling relationship between the ore-forming rock mass and the surrounding rock.The ore-forming age is dominated by the Yanshanian period.Based on the distribution,types and metallogenic characteristics of the deposits,the metallogenic model of'layer coupling'in the Tongling ore district is summarized,with the'one body,two belts and a multilayer metallogenic system'is established,which is significant for the future direction of deep prospecting in the Tongling area. 展开更多
关键词 3D model metallogenic model prospecting direction deep mineralization TONGLING
下载PDF
Three-dimensional Modeling of Ore-forming Elements and Mineralization Prognosis for the Yechangping Mo Deposit,Henan Province,China 被引量:1
10
作者 DING Gaoming JI Genyuan +5 位作者 YAN Guolong XU Yongzhong WANG Kunming XIAO Chun WANG Quanle GUO Dongbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期736-752,共17页
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di... Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration. 展开更多
关键词 3D geochemical model ore-forming elements GEOSTATISTICS deep mineralization prediction Yechangping Mo deposit
下载PDF
The Discovery of Diamonds in Chromitites of the Hegenshan Ophiolite,Inner Mongolia,China 被引量:7
11
作者 HUANG Zhu YANG Jingsui +5 位作者 Paul T.ROBINSON ZHU Yongwang XIONG Fahui LIU Zhao ZHANG Zhongming XU Wei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期341-350,共10页
Diamond, moissanite and a variety of other minerals, similar to those reported from ophiolites in Tibet and northern Russia, have recently been discovered in chromitites of the Hegenshan ophiolite of the Central Asian... Diamond, moissanite and a variety of other minerals, similar to those reported from ophiolites in Tibet and northern Russia, have recently been discovered in chromitites of the Hegenshan ophiolite of the Central Asian Orogenic Belt, north China. The chromitites are small, podiform and vein-like bodies hosted in dunite, clinopyroxene-bearing peridotite, troctolite and gabbro. All of the analysed chromite grains are relatively Al-rich, with Cr^# [100Cr/(Cr+Al)] of about 47-53. Preliminary studies of mainly disseminated chromitite from ore body No. 3756 have identified more than 30 mineral species in addition to diamond and moissanite. These include oxides (mostly hematite, magnetite, ruffle, anatase, cassiterite, and quartz), sulfides (pyrite, marcasite and others), silicates (magnesian olivine, enstatite, augite, diopside, uvarovite, pyrope, orthoclase, zircon, sphene, vesuvianite, chlorite and serpentine) and others (e.g., calcite, monazite, glauberite, iowaite and a range of metallic alloys). This study demonstrates that diamond, moissanite and other exotic minerals can occur in high-Al, as well as high-Cr chromites, and significantly extends the geographic and age range of known diamond-bearing ophiolites. 展开更多
关键词 DIAMOND moissanite deep mantle minerals chromitites Hegenshan ophiolite InnerMongolia
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部