Quantifying the contributions to Arctic sea level(ASL)variability is critical to understand how the Arctic is responsing to ongoing climate change.Here,we use Ocean Reanalysis System 5(ORAS5)reanalysis data and tide g...Quantifying the contributions to Arctic sea level(ASL)variability is critical to understand how the Arctic is responsing to ongoing climate change.Here,we use Ocean Reanalysis System 5(ORAS5)reanalysis data and tide gauge and satellite altimetry observations to quantify contributions from different physical processes on the ASL variability.The ORAS5 reanalysis shows that the ASL is rising with a trend of 2.5±0.3 mm yr−1(95%confidence level)over 1979-2018,which can be attributed to four components:(i)the dominant component from the global sea level increase of 1.9±0.5 mm yr−1,explaining 69.7%of the total variance of the ASL time series;(ii)the Arctic Oscillation-induced mass redistribution between the deep central basin and shallow shelves,with no significant trend and explaining 6.3%of the total variance;(iii)the steric sea level increase centering on the Beaufort Gyre region with a trend of 0.5±0.1 mm yr−1 and explaining 29.1%of the total variance of the ASL time series;and(iv)the intrusion of Pacific water into the Arctic Ocean,with no significant trend and contributing 14.2%of the total ASL variability.Furthermore,the dramatic sea ice melting and the larger area of open water changes the impact of the large-scale atmospheric forcing on the ASL variability after 1995,and the ocean dynamic circulation plays a more important role in the ASL variability.展开更多
In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and ...In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and effects of ocean salinity.In this study,we utilize the Argo data during 2004–2017,together with the satellite observations and a newly released version of ECCO ocean reanalysis,to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO)and its impacts on the regional sea level changes.Both the observations and ECCO reanalysis show that during the Argo era,sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017.Such a decadal phase reversal in sea level could be explained,to a large extent,by the steric sea level variability in the upper 300 m.Argo data further show that,in the SEIO,both the temperature and salinity changes have significant positive contributions to the decadal sea level variations.This is different from much of the Indo-Pacific region,where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale.The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection.More detailed decomposition reveals that in the SEIO,there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters.The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.展开更多
The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in globa...The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.展开更多
Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projec...Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.展开更多
Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised...Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4–8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.展开更多
Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the g...Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the global SLV and its steric and mass components were estimated by satellite altimetry,Argo float data and the Gravity Recovery and Climate Experiment(GRACE) data over 2005-2014.Space gravimetry observations from GRACE suggested that two-thirds of the global mean sea level rise rate observed by altimetry(i.e.,3.1 ± 0.3 mm/a from 2005 to 2014) could be explained by an increase in ocean mass.Furthermore,the global mean sea level was observed to drop significantly during the2010/2011 La Nina event,which may be attributed to the decline of ocean mass and steric SLV.Since early 2011,the global mean sea level began to rise rapidly,which was attributed to an increase in ocean mass.The findings in this study suggested that the global mean sea-level budget was closed from 2005 to 2014 based on altimetry,GRACE,and Argo data.展开更多
Interannual sea level variation is investigated with the oceanic and atmospheric datasets in the East China Sea (ECS). Two modes are distinct on the interannual timescale, illustrated as the basin mode and the dipole ...Interannual sea level variation is investigated with the oceanic and atmospheric datasets in the East China Sea (ECS). Two modes are distinct on the interannual timescale, illustrated as the basin mode and the dipole mode. They account for 20% and 18% to the total interannual sea level variance respectively. The basin mode corresponds to the variability of the Kuroshio transport which is modulated by the PDO while the dipole mode is likely related to the local oceanic and atmospheric adjustment. Large-scale atmospheric circulation effect is dominant in influencing the interannual sea level in the ECS. ECS sea level responds barotropically to the basin-wide wind field, which illustrates negative correlation to the zonal-mean wind stress curl in the Pacific Ocean. Sea level variation exhibits the negative correlation at 8 years lag with the basin mean wind stress curl anomalies on the interannual timescale. The lagging years are consistent with the timescale that the baroclinic Rossby waves propagate westward in the North Pacific Ocean. Wind stress curl anomalies could also change the strength of the Kuroshio transport, and thus affect the local sea level through sea surface height adjustment. Local oceanic and atmospheric effect illustrates as another influence process. Steric effect contributes more than 20% to the interannual sea level gradually in a belt from the Fujian and Zhejiang coasts to the Korea/Tsushima strait. Especially in the northeast part, its contribution could be up to 60%. While for the local atmospheric process, zonal wind acts as a more important role on sea level than meridional component.展开更多
基于不同机构(SIO、JAM和EN4)发布的多套Argo数据集,分析盐度漂移的时空变化特征。结果表明,2016年以后,3家机构发布的盐度数据集都存在明显的系统性漂移,且不同深度层的盐度漂移幅度差异较大。为此,基于赤池信息量准则(Akaike informat...基于不同机构(SIO、JAM和EN4)发布的多套Argo数据集,分析盐度漂移的时空变化特征。结果表明,2016年以后,3家机构发布的盐度数据集都存在明显的系统性漂移,且不同深度层的盐度漂移幅度差异较大。为此,基于赤池信息量准则(Akaike information criterion,AIC)提出面向特定深度层盐度漂移的多项式修正方法。该方法能有效修正0~2000m深度范围内Argo数据集的盐度偏差,使得2005~2021年的GMSL预算平衡偏差减少约43%。盐度漂移具有复杂的空间关联性,全球盐容海平面变化趋势存在显著的空间分布差异,北大西洋区域最为显著,修正后其空间分布趋于一致。展开更多
This article addresses the relationship between science and propaganda using the Climate Change controversy as a study model. The United Nations International Panel on Climate Change (IPCC) is the recognized leader on...This article addresses the relationship between science and propaganda using the Climate Change controversy as a study model. The United Nations International Panel on Climate Change (IPCC) is the recognized leader on this model issuing multiple Assessment Reports. This review begins with a discussion of the basics—what is propaganda and how does it work, followed by whether the IPCC adopted or rejected it. Next explored is how propaganda can be seamlessly fused into “report writing” in a way that arouses and makes interesting humdrum details. Some unexpected results emerged from current and historical observation data involving the Greenhouse theory, CO2 sources, ocean pH, sea levels, and ice balances. The final section confronts whether “a point of view” constrains objectivity in favor of outcome. The overall conclusion is that the earth is boringly healthy.展开更多
利用CCSM3(Community Climate System Model version 3)气候系统模式模拟20世纪海平面变化,在IPCC SRES A2(IPCC,2001)情景假设下预测21世纪全球海平面长期趋势变化。模拟显示20世纪海平面上升约4.0cm,且存在0.004 8mm/a2的加速度,这个...利用CCSM3(Community Climate System Model version 3)气候系统模式模拟20世纪海平面变化,在IPCC SRES A2(IPCC,2001)情景假设下预测21世纪全球海平面长期趋势变化。模拟显示20世纪海平面上升约4.0cm,且存在0.004 8mm/a2的加速度,这个结果仅为热盐比容的贡献。在A2情景假设下,21世纪海平面上升存在很大的区域特征,呈纬向带状分布;总体上北冰洋上升大,南大洋高纬度海区上升小,大西洋上升值比太平洋的大;整个21世纪全球平均比容海平面上升了约30cm,且呈加速上升的趋势。同时发现,中深层水温度和盐度变化对区域比容海平面变化具有重要贡献。北太平洋增暖主要集中在上层700m以内,而北大西洋的增暖可达2 500m的深度,南大洋南极绕极流海区热盐变化则是发生在整个深度。展开更多
基金the National Key R&D Program of China(Grant No.2019YFA0607000)the National Natural Science Foundation of China(Grant Nos.41825012 and 42206207)the Fundamental Research Funds for the Central Universities(Grant No.202213048).
文摘Quantifying the contributions to Arctic sea level(ASL)variability is critical to understand how the Arctic is responsing to ongoing climate change.Here,we use Ocean Reanalysis System 5(ORAS5)reanalysis data and tide gauge and satellite altimetry observations to quantify contributions from different physical processes on the ASL variability.The ORAS5 reanalysis shows that the ASL is rising with a trend of 2.5±0.3 mm yr−1(95%confidence level)over 1979-2018,which can be attributed to four components:(i)the dominant component from the global sea level increase of 1.9±0.5 mm yr−1,explaining 69.7%of the total variance of the ASL time series;(ii)the Arctic Oscillation-induced mass redistribution between the deep central basin and shallow shelves,with no significant trend and explaining 6.3%of the total variance;(iii)the steric sea level increase centering on the Beaufort Gyre region with a trend of 0.5±0.1 mm yr−1 and explaining 29.1%of the total variance of the ASL time series;and(iv)the intrusion of Pacific water into the Arctic Ocean,with no significant trend and contributing 14.2%of the total ASL variability.Furthermore,the dramatic sea ice melting and the larger area of open water changes the impact of the large-scale atmospheric forcing on the ASL variability after 1995,and the ocean dynamic circulation plays a more important role in the ASL variability.
基金The National Key Research and Development Program of China under contract No.2019YFA0606702the SOA Global Change and Air-Sea Interaction Project under contract No.GASI-IPOVAI-01-04the National Natural Science Foundation of China under contract Nos 41776003,91858202 and 41630963。
文摘In the past nearly two decades,the Argo Program has created an unprecedented global observing array with continuous in situ salinity observations,providing opportunities to extend our knowledge on the variability and effects of ocean salinity.In this study,we utilize the Argo data during 2004–2017,together with the satellite observations and a newly released version of ECCO ocean reanalysis,to explore the decadal salinity variability in the Southeast Indian Ocean(SEIO)and its impacts on the regional sea level changes.Both the observations and ECCO reanalysis show that during the Argo era,sea level in the SEIO and the tropical western Pacific experienced a rapid rise in 2005–2013 and a subsequent decline in 2013–2017.Such a decadal phase reversal in sea level could be explained,to a large extent,by the steric sea level variability in the upper 300 m.Argo data further show that,in the SEIO,both the temperature and salinity changes have significant positive contributions to the decadal sea level variations.This is different from much of the Indo-Pacific region,where the halosteric component often has minor or negative contributions to the regional sea level pattern on decadal timescale.The salinity budget analyses based on the ECCO reanalysis indicate that the decadal salinity change in the upper 300 m of SEIO is mainly caused by the horizontal ocean advection.More detailed decomposition reveals that in the SEIO,there exists a strong meridional salinity front between the tropical low-salinity and subtropical high salinity waters.The meridional component of decadal circulation changes will induce strong cross-front salinity exchange and thus the significant regional salinity variations.
基金funded by the National Natural Science Foundation of China (40806072)the National Science And Technology Supporting Plan (2007BAC03A0606)
文摘The Greenland Sea,Iceland Sea,and Norwegian Sea (GIN seas) form the main channel connecting the Arctic Ocean with other Oceans,where significant water and energy exchange take place,and play an important role in global climate change.In this study steric sea level,associated with temperature and salinity,in the GIN seas is examined based on analysis of the monthly temperature and salinity fields from Polar science center Hydrographic Climatology (PHC3.0).A method proposed by Tabata et al.is used to calculate steric sea level,in which,steric sea level change due to thermal expansion and haline contraction is termed as the thermosteric component (TC) and the halosteric component (SC),recpectively.Total steric sea level (TSSL) change is the sum of TC and SC.The study shows that SC is making more contributions than TC to the seasonal change of TSSL in the Greenland Sea,whereas TC contributes more in the Norwegian and the Iceland Seas.Annual variation of TSSL is larger than 50 mm over most regions of the GIN Seas,and can be larger than 200 mm at some locations such as 308 mm at 76.5 N,12.5 E and 246 mm at 77.5 N,17.5 W.
基金supported by the National Natural Science Foundation of China(Grants No.41206021 and 41276018)the National Basic Research Program of China(Grant No.2012CB955601)+2 种基金the Young Scientist Foundation of the State Oceanic Administration,China(Grant No.2012251)the U.S.National Science Foundation Belmont Forum Program(Grant No.ICER-1342644)the GASI-03-01-01-09
文摘Because of the environmental and socioeconomic impacts of anthropogenic sea level rise (SLR), it is very important to understand the processes leading to past and present SLRs towards more reliable future SLR projections. A regional ocean general circulation model (ROGCM), with a grid refinement in the Bohai, Yellow, and East China Seas (BYECSs), was set up to project SLR induced by the ocean dynamic change in the 21st century. The model does not consider the contributions from ice sheets and glacier melting. Data of all forcing terms required in the model came from the simulation of the Community Climate System Model version 3.0 (CCSM3) under the International Panel on Climate Change (IPCC)-A2 scenario. Simulation results show that at the end of the 21st century, the sea level in the BYECSs will rise about 0.12 to 0.20 m. The SLR in the BYECSs during the 21st century is mainly caused by the ocean mass redistribution due to the ocean dynamic change of the Pacific Ocean, which means that water in the Pacific Ocean tends to move to the continental shelves of the BYECSs, although the local steric sea level change is another factor.
基金Supported by the National High Technology Research and Development Program of China (863 Program, 2006AA09Z349)the National Basic Research Program of China (2007CB411703)
文摘Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4–8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.
基金supported by the National Key Basic Research Program of China(973 program,2012CB957703 and2013CB733305)the National Natural Science Foundation of China(41431070,41174066 and 41321063)
文摘Total sea level variations(SLVs) are caused by two major components:steric variations due to thermal expansion of seawater,and mass-induced variations due to mass exchange between ocean and land.In this study,the global SLV and its steric and mass components were estimated by satellite altimetry,Argo float data and the Gravity Recovery and Climate Experiment(GRACE) data over 2005-2014.Space gravimetry observations from GRACE suggested that two-thirds of the global mean sea level rise rate observed by altimetry(i.e.,3.1 ± 0.3 mm/a from 2005 to 2014) could be explained by an increase in ocean mass.Furthermore,the global mean sea level was observed to drop significantly during the2010/2011 La Nina event,which may be attributed to the decline of ocean mass and steric SLV.Since early 2011,the global mean sea level began to rise rapidly,which was attributed to an increase in ocean mass.The findings in this study suggested that the global mean sea-level budget was closed from 2005 to 2014 based on altimetry,GRACE,and Argo data.
文摘Interannual sea level variation is investigated with the oceanic and atmospheric datasets in the East China Sea (ECS). Two modes are distinct on the interannual timescale, illustrated as the basin mode and the dipole mode. They account for 20% and 18% to the total interannual sea level variance respectively. The basin mode corresponds to the variability of the Kuroshio transport which is modulated by the PDO while the dipole mode is likely related to the local oceanic and atmospheric adjustment. Large-scale atmospheric circulation effect is dominant in influencing the interannual sea level in the ECS. ECS sea level responds barotropically to the basin-wide wind field, which illustrates negative correlation to the zonal-mean wind stress curl in the Pacific Ocean. Sea level variation exhibits the negative correlation at 8 years lag with the basin mean wind stress curl anomalies on the interannual timescale. The lagging years are consistent with the timescale that the baroclinic Rossby waves propagate westward in the North Pacific Ocean. Wind stress curl anomalies could also change the strength of the Kuroshio transport, and thus affect the local sea level through sea surface height adjustment. Local oceanic and atmospheric effect illustrates as another influence process. Steric effect contributes more than 20% to the interannual sea level gradually in a belt from the Fujian and Zhejiang coasts to the Korea/Tsushima strait. Especially in the northeast part, its contribution could be up to 60%. While for the local atmospheric process, zonal wind acts as a more important role on sea level than meridional component.
文摘基于不同机构(SIO、JAM和EN4)发布的多套Argo数据集,分析盐度漂移的时空变化特征。结果表明,2016年以后,3家机构发布的盐度数据集都存在明显的系统性漂移,且不同深度层的盐度漂移幅度差异较大。为此,基于赤池信息量准则(Akaike information criterion,AIC)提出面向特定深度层盐度漂移的多项式修正方法。该方法能有效修正0~2000m深度范围内Argo数据集的盐度偏差,使得2005~2021年的GMSL预算平衡偏差减少约43%。盐度漂移具有复杂的空间关联性,全球盐容海平面变化趋势存在显著的空间分布差异,北大西洋区域最为显著,修正后其空间分布趋于一致。
文摘This article addresses the relationship between science and propaganda using the Climate Change controversy as a study model. The United Nations International Panel on Climate Change (IPCC) is the recognized leader on this model issuing multiple Assessment Reports. This review begins with a discussion of the basics—what is propaganda and how does it work, followed by whether the IPCC adopted or rejected it. Next explored is how propaganda can be seamlessly fused into “report writing” in a way that arouses and makes interesting humdrum details. Some unexpected results emerged from current and historical observation data involving the Greenhouse theory, CO2 sources, ocean pH, sea levels, and ice balances. The final section confronts whether “a point of view” constrains objectivity in favor of outcome. The overall conclusion is that the earth is boringly healthy.
文摘利用CCSM3(Community Climate System Model version 3)气候系统模式模拟20世纪海平面变化,在IPCC SRES A2(IPCC,2001)情景假设下预测21世纪全球海平面长期趋势变化。模拟显示20世纪海平面上升约4.0cm,且存在0.004 8mm/a2的加速度,这个结果仅为热盐比容的贡献。在A2情景假设下,21世纪海平面上升存在很大的区域特征,呈纬向带状分布;总体上北冰洋上升大,南大洋高纬度海区上升小,大西洋上升值比太平洋的大;整个21世纪全球平均比容海平面上升了约30cm,且呈加速上升的趋势。同时发现,中深层水温度和盐度变化对区域比容海平面变化具有重要贡献。北太平洋增暖主要集中在上层700m以内,而北大西洋的增暖可达2 500m的深度,南大洋南极绕极流海区热盐变化则是发生在整个深度。