The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that...The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.展开更多
As the global demand for renewable energy grows,solar energy is gaining attention as a clean,sustainable energy source.Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic...As the global demand for renewable energy grows,solar energy is gaining attention as a clean,sustainable energy source.Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants.This study proposes an integrated deep learning-based photovoltaic resource assessment method.Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time.The proposed method combines the random forest,gated recurrent unit,and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment.The proposed method has strong adaptability and high accuracy even in the photovoltaic resource assessment of complex terrain and landscape.The experimental results show that the proposed method outperforms the comparison algorithm in all evaluation indexes,indicating that the proposed method has higher accuracy and reliability in photovoltaic resource assessment with improved generalization performance traditional single algorithm.展开更多
Cancer has become a cause of concern in recent years. Cancer genomics is currently a key research direction in the fields of genetic biology and biomedicine. This paper analyzes 5 different types of cancer genes, such...Cancer has become a cause of concern in recent years. Cancer genomics is currently a key research direction in the fields of genetic biology and biomedicine. This paper analyzes 5 different types of cancer genes, such as breast, kidney, colon, lung and prostate through machine learning methods, with the goal of building a robust classification model to identify each type of cancer, which will allow us to identify each type of cancer early, thereby reducing mortality.展开更多
Infection of leukemia in humans causes many complications in its later stages.It impairs bone marrow’s ability to produce blood.Morphological diagnosis of human blood cells is a well-known and well-proven technique f...Infection of leukemia in humans causes many complications in its later stages.It impairs bone marrow’s ability to produce blood.Morphological diagnosis of human blood cells is a well-known and well-proven technique for diagnosis in this case.The binary classification is employed to distinguish between normal and leukemiainfected cells.In addition,various subtypes of leukemia require different treatments.These sub-classes must also be detected to obtain an accurate diagnosis of the type of leukemia.This entails using multi-class classification to determine the leukemia subtype.This is usually done using a microscopic examination of these blood cells.Due to the requirement of a trained pathologist,the decision process is critical,which leads to the development of an automated software framework for diagnosis.Researchers utilized state-of-the-art machine learning approaches,such as Support Vector Machine(SVM),Random Forest(RF),Na飗e Bayes,K-Nearest Neighbor(KNN),and others,to provide limited accuracies of classification.More advanced deep-learning methods are also utilized.Due to constrained dataset sizes,these approaches result in over-fitting,reducing their outstanding performances.This study introduces a deep learning-machine learning combined approach for leukemia diagnosis.It uses deep transfer learning frameworks to extract and classify features using state-of-the-artmachine learning classifiers.The transfer learning frameworks such as VGGNet,Xception,InceptionResV2,Densenet,and ResNet are employed as feature extractors.The extracted features are given to RF and XGBoost classifiers for the binary and multi-class classification of leukemia cells.For the experimentation,a very popular ALL-IDB dataset is used,approaching a maximum accuracy of 100%.A private real images dataset with three subclasses of leukemia images,including Acute Myloid Leukemia(AML),Chronic Lymphocytic Leukemia(CLL),and Chronic Myloid Leukemia(CML),is also employed to generalize the system.This dataset achieves an impressive multi-class classification accuracy of 97.08%.The proposed approach is robust and generalized by a standardized dataset and the real image dataset with a limited sample size(520 images).Hence,this method can be explored further for leukemia diagnosis having a limited number of dataset samples.展开更多
文摘The freshness of fruits is considered to be one of the essential characteristics for consumers in determining their quality,flavor and nutritional value.The primary need for identifying rotten fruits is to ensure that only fresh and high-quality fruits are sold to consumers.The impact of rotten fruits can foster harmful bacteria,molds and other microorganisms that can cause food poisoning and other illnesses to the consumers.The overall purpose of the study is to classify rotten fruits,which can affect the taste,texture,and appearance of other fresh fruits,thereby reducing their shelf life.The agriculture and food industries are increasingly adopting computer vision technology to detect rotten fruits and forecast their shelf life.Hence,this research work mainly focuses on the Convolutional Neural Network’s(CNN)deep learning model,which helps in the classification of rotten fruits.The proposed methodology involves real-time analysis of a dataset of various types of fruits,including apples,bananas,oranges,papayas and guavas.Similarly,machine learningmodels such as GaussianNaïve Bayes(GNB)and random forest are used to predict the fruit’s shelf life.The results obtained from the various pre-trained models for rotten fruit detection are analysed based on an accuracy score to determine the best model.In comparison to other pre-trained models,the visual geometry group16(VGG16)obtained a higher accuracy score of 95%.Likewise,the random forest model delivers a better accuracy score of 88% when compared with GNB in forecasting the fruit’s shelf life.By developing an accurate classification model,only fresh and safe fruits reach consumers,reducing the risks associated with contaminated produce.Thereby,the proposed approach will have a significant impact on the food industry for efficient fruit distribution and also benefit customers to purchase fresh fruits.
基金funded by Key-Area Research and Development Program Project of Guangdong Province (2021B0101230003)China Southern Power Grid Science and Technology Project (ZBKJXM20220004).
文摘As the global demand for renewable energy grows,solar energy is gaining attention as a clean,sustainable energy source.Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants.This study proposes an integrated deep learning-based photovoltaic resource assessment method.Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time.The proposed method combines the random forest,gated recurrent unit,and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment.The proposed method has strong adaptability and high accuracy even in the photovoltaic resource assessment of complex terrain and landscape.The experimental results show that the proposed method outperforms the comparison algorithm in all evaluation indexes,indicating that the proposed method has higher accuracy and reliability in photovoltaic resource assessment with improved generalization performance traditional single algorithm.
文摘Cancer has become a cause of concern in recent years. Cancer genomics is currently a key research direction in the fields of genetic biology and biomedicine. This paper analyzes 5 different types of cancer genes, such as breast, kidney, colon, lung and prostate through machine learning methods, with the goal of building a robust classification model to identify each type of cancer, which will allow us to identify each type of cancer early, thereby reducing mortality.
基金supported by the Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS),the University of Technology Sydney,the Ministry of Education of the Republic of Korea,and the National Research Foundation of Korea (NRF-2023R1A2C1007742)in part by the Researchers Supporting Project Number RSP-2023/14,King Saud University。
文摘Infection of leukemia in humans causes many complications in its later stages.It impairs bone marrow’s ability to produce blood.Morphological diagnosis of human blood cells is a well-known and well-proven technique for diagnosis in this case.The binary classification is employed to distinguish between normal and leukemiainfected cells.In addition,various subtypes of leukemia require different treatments.These sub-classes must also be detected to obtain an accurate diagnosis of the type of leukemia.This entails using multi-class classification to determine the leukemia subtype.This is usually done using a microscopic examination of these blood cells.Due to the requirement of a trained pathologist,the decision process is critical,which leads to the development of an automated software framework for diagnosis.Researchers utilized state-of-the-art machine learning approaches,such as Support Vector Machine(SVM),Random Forest(RF),Na飗e Bayes,K-Nearest Neighbor(KNN),and others,to provide limited accuracies of classification.More advanced deep-learning methods are also utilized.Due to constrained dataset sizes,these approaches result in over-fitting,reducing their outstanding performances.This study introduces a deep learning-machine learning combined approach for leukemia diagnosis.It uses deep transfer learning frameworks to extract and classify features using state-of-the-artmachine learning classifiers.The transfer learning frameworks such as VGGNet,Xception,InceptionResV2,Densenet,and ResNet are employed as feature extractors.The extracted features are given to RF and XGBoost classifiers for the binary and multi-class classification of leukemia cells.For the experimentation,a very popular ALL-IDB dataset is used,approaching a maximum accuracy of 100%.A private real images dataset with three subclasses of leukemia images,including Acute Myloid Leukemia(AML),Chronic Lymphocytic Leukemia(CLL),and Chronic Myloid Leukemia(CML),is also employed to generalize the system.This dataset achieves an impressive multi-class classification accuracy of 97.08%.The proposed approach is robust and generalized by a standardized dataset and the real image dataset with a limited sample size(520 images).Hence,this method can be explored further for leukemia diagnosis having a limited number of dataset samples.