Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles(AUVs).To estimate the vehicle position,we present an algorithm using an extended Kalman filter(EKF) to integrate dead-reckon...Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles(AUVs).To estimate the vehicle position,we present an algorithm using an extended Kalman filter(EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment.Owing to high latency,variable sound speed multipath transmissions and unreliability in acoustic measurements,outlier recognition techniques are proposed as well.The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments.Our results show the improved performance over prior techniques based on position computation.展开更多
On the basis of the current measurements from the moored Long Ranger ADCP in the upper 450 m layer and the deep current measurements at 2000 and 2300 m from the moored current meters with the time series data of about...On the basis of the current measurements from the moored Long Ranger ADCP in the upper 450 m layer and the deep current measurements at 2000 and 2300 m from the moored current meters with the time series data of about 7 months at the mooring station in the northeastern South China Sea, the spectral analyses and calculation have been made. The major results are as follows: (i) From the progressive vector diagrams of the observed daily currents at the water levels from 50 m to 400 m, its temporal variation of velocity rotated counterclockwise in most of the observing time. This agrees basically with the result from the qualitative analysis of the sea surface height data, which was obtained from TOPEX/ERS-2 altimeter data by CCAR. The daily and monthly average velocities are both the largest in November, next in October and minimum in August. (ii) At the 2000 and 2300 m levels, the daily and monthly average velocities are both the largest in January, next in September and minimum in August. From the seasonal change of currents, the current velocity is the strongest in winter (January-March), next in autumn, and weak in summer. (iii) There exists the variation of tidal current with the change of depth. In the upper layer, the height of diurnal peak is higher than that of semidiurnal peak. However, the semidiurnal peak is higher than the diurnal peak at the levels from 200 m to 400 m. In the layers above 450 m the clockwise component is dominant in their fluctuations. In the layers below 1500 m the diurnal peak is again higher than the semidiurnal peak. (iv) There is the prominent periodic fluctuation of more than two months in the layer from 50 m to 2300 m. The period of this prominent peak is 75 d and its fluctuation is counterclockwise in the upper 450 m layers, and is 68 d and 69 d at the depths of 2000 and 2300 m, respectively, and the counterclockwise component is dominant in their fluctuations. (v) There are the variations of periods fluctuating with the change of depth in the upper 450 m layers. For example, when f>0, there are the prominent fluctuations of about 22 d and 15 d period at the 50 and 100 m levels. However, there are no such periods at the layer from 200 m to 400 m, where only the fluctuation of about 13 d period occurs. (vi) There are the fluctuations with periods of more than one month, 23 d and 15 d at the 2000 m and 2300 m levels. (vii) In the layer from 50 m to 2300 m there are the following prominent peaks: i) the fluctuation in the period range of about 4-8 d, which occurs in the weather process; ii) the fluctuation with inertial period, the fluctuation is clockwise; and iii) the fluctuations with short periods of about 8 h and 6 h. (viii) From the cross spectral estimates between two time series, it is shown that there are significant coherence peaks with the periods of more than two months(T = 68.3 d) and more than one month between the two time series of currents at 2000 m and 2300 m depths, and also those with periods of about half a month (15.5 d), 2 d and so on between two time series of currents at 100 m and 2300 m depths.展开更多
Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly...Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly.Then,the interaction between diamond drill bits and rock was analyzed based on numerical modeling.A novel drill bit with an inner conical crown for the mitigation of core discing was designed and verified by simulation experiments.The mitigation method was applied in the cavern B1 of CJPL-Ⅱand satisfactory results had been achieved.The percentage of core discing had been obviously decreased from 67.8%when drilling with a rectangular crown drill bit,to 26.5%when an inner conical crown drill bit had been adopted.This paper gives full insight into core discing characteristics and provides a new method for core discing mitigation;it will potentially contribute to stress measurement in deep rock engineering.展开更多
西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中...西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中脊热液区的硫化物和围岩等样品进行了系统的物性测量,结合岩石物性(包括密度、孔隙度、P波速度)与矿物组成,深入分析了西南印度洋中脊热液区岩石声速变化特性及其影响因素。结果表明,SWIR热液区围岩的P波速度受到岩石骨架矿物、孔隙和围压的影响。由于岩石孔隙度总体偏小,对P波速度的影响并不显著,但围压的增加使岩石微裂缝和孔隙逐渐闭合,P波速度呈非线性指数变化。蚀变作用导致了矿物成分改变,是影响围岩声速的最关键因素。单一物性参数测量结果可能存在多解性,联合波速、密度、磁性和电性等多物性参数测量有利于岩性区分。该研究成果有助于识别硫化物和围岩,为我国西南印度洋合同区多金属硫化物地震勘探工作提供重要支撑。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.51309215)
文摘Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles(AUVs).To estimate the vehicle position,we present an algorithm using an extended Kalman filter(EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment.Owing to high latency,variable sound speed multipath transmissions and unreliability in acoustic measurements,outlier recognition techniques are proposed as well.The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments.Our results show the improved performance over prior techniques based on position computation.
基金This work was supported by the State Basic Research Program of China (Grand Nos. G1999043805 and G1999043810)
文摘On the basis of the current measurements from the moored Long Ranger ADCP in the upper 450 m layer and the deep current measurements at 2000 and 2300 m from the moored current meters with the time series data of about 7 months at the mooring station in the northeastern South China Sea, the spectral analyses and calculation have been made. The major results are as follows: (i) From the progressive vector diagrams of the observed daily currents at the water levels from 50 m to 400 m, its temporal variation of velocity rotated counterclockwise in most of the observing time. This agrees basically with the result from the qualitative analysis of the sea surface height data, which was obtained from TOPEX/ERS-2 altimeter data by CCAR. The daily and monthly average velocities are both the largest in November, next in October and minimum in August. (ii) At the 2000 and 2300 m levels, the daily and monthly average velocities are both the largest in January, next in September and minimum in August. From the seasonal change of currents, the current velocity is the strongest in winter (January-March), next in autumn, and weak in summer. (iii) There exists the variation of tidal current with the change of depth. In the upper layer, the height of diurnal peak is higher than that of semidiurnal peak. However, the semidiurnal peak is higher than the diurnal peak at the levels from 200 m to 400 m. In the layers above 450 m the clockwise component is dominant in their fluctuations. In the layers below 1500 m the diurnal peak is again higher than the semidiurnal peak. (iv) There is the prominent periodic fluctuation of more than two months in the layer from 50 m to 2300 m. The period of this prominent peak is 75 d and its fluctuation is counterclockwise in the upper 450 m layers, and is 68 d and 69 d at the depths of 2000 and 2300 m, respectively, and the counterclockwise component is dominant in their fluctuations. (v) There are the variations of periods fluctuating with the change of depth in the upper 450 m layers. For example, when f>0, there are the prominent fluctuations of about 22 d and 15 d period at the 50 and 100 m levels. However, there are no such periods at the layer from 200 m to 400 m, where only the fluctuation of about 13 d period occurs. (vi) There are the fluctuations with periods of more than one month, 23 d and 15 d at the 2000 m and 2300 m levels. (vii) In the layer from 50 m to 2300 m there are the following prominent peaks: i) the fluctuation in the period range of about 4-8 d, which occurs in the weather process; ii) the fluctuation with inertial period, the fluctuation is clockwise; and iii) the fluctuations with short periods of about 8 h and 6 h. (viii) From the cross spectral estimates between two time series, it is shown that there are significant coherence peaks with the periods of more than two months(T = 68.3 d) and more than one month between the two time series of currents at 2000 m and 2300 m depths, and also those with periods of about half a month (15.5 d), 2 d and so on between two time series of currents at 100 m and 2300 m depths.
基金Projects(U1765206,51979268,51621006)supported by the National Natural Science Foundation of China。
文摘Core discing often occurs in deep rocks under high-stress conditions and has been identified as an important characteristic for deep rock engineering.This paper presents the formation mechanism of core discing firstly.Then,the interaction between diamond drill bits and rock was analyzed based on numerical modeling.A novel drill bit with an inner conical crown for the mitigation of core discing was designed and verified by simulation experiments.The mitigation method was applied in the cavern B1 of CJPL-Ⅱand satisfactory results had been achieved.The percentage of core discing had been obviously decreased from 67.8%when drilling with a rectangular crown drill bit,to 26.5%when an inner conical crown drill bit had been adopted.This paper gives full insight into core discing characteristics and provides a new method for core discing mitigation;it will potentially contribute to stress measurement in deep rock engineering.
文摘西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中脊热液区的硫化物和围岩等样品进行了系统的物性测量,结合岩石物性(包括密度、孔隙度、P波速度)与矿物组成,深入分析了西南印度洋中脊热液区岩石声速变化特性及其影响因素。结果表明,SWIR热液区围岩的P波速度受到岩石骨架矿物、孔隙和围压的影响。由于岩石孔隙度总体偏小,对P波速度的影响并不显著,但围压的增加使岩石微裂缝和孔隙逐渐闭合,P波速度呈非线性指数变化。蚀变作用导致了矿物成分改变,是影响围岩声速的最关键因素。单一物性参数测量结果可能存在多解性,联合波速、密度、磁性和电性等多物性参数测量有利于岩性区分。该研究成果有助于识别硫化物和围岩,为我国西南印度洋合同区多金属硫化物地震勘探工作提供重要支撑。