Depth-dependent distribution patterns of bacterial and archaeal communities in deep sea water column around the Ninetyeast Ridge in the Indian Ocean were investigated using 16S rRNA gene profiling.Sampling was conduct...Depth-dependent distribution patterns of bacterial and archaeal communities in deep sea water column around the Ninetyeast Ridge in the Indian Ocean were investigated using 16S rRNA gene profiling.Sampling was conducted at the northern Ninetyeast Ridge(1°59.89′N–9°59.70′S,87°58.90′E–88°00.03′E)from September to November 2016 where samples were collected from the bathyal(1000 m)to bathypelagic depths(>4000 m)in four different stations.A total of 1565405 clean data falling into 6712 bacterial OTUs and 1452727 clean data falling into 806 archaeal OTUs based on 97%similarity level were analyzed.Most of the bacterial 16S rRNA gene sequences were affiliated with Gammaproteobacteria,followed by Alphaproteobacteria and Bacteroidia.The archaeal 16S rRNA gene sequences mostly affiliated to Nitrososphaeria(Thaumarchaeota)dominated with relative abundances ranging from 52.68%to 97.2%,followed by Thermoplasmata(Euryarchaeota).Vertical partitioning of bacterial and archaeal communities among different water layers was observed.Canonical correspondence analysis(CCA)and Spearman’s correlations revealed that depth(P=0.003),dissolved oxygen(P=0.019),and nitrite(P=0.033)were the main environmental factors affecting bacterial community structure at genus level in the Ninetyeast Ridge.On the other hand,the first two CCA axes accounted for 74.4%of the explained total variance,it seems that the archaeal communities at genus level were heavily influenced by the environmental variables including depth,dissolved oxygen(DO),nitrite,salinity,phosphate,ammonia,nitrate,and silicate,but none of them exhibited any significant correlation on the structuring(P>0.1).展开更多
The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil produ...The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.展开更多
The warming of deep waters in the Nordic seas is identified based on observations during Chinese 5th Arctic Expedition in 2012 and historical hydrographic data. The most obvious and earliest warming occurrs in the Gre...The warming of deep waters in the Nordic seas is identified based on observations during Chinese 5th Arctic Expedition in 2012 and historical hydrographic data. The most obvious and earliest warming occurrs in the Greenland Basin (GB) and shows a coincident accelerated trend between depths 2000 and 3500 m. The ob-servations at a depth of 3000 m in the GB reveal that the potential temperature had increased from ?1.30°C in the early 1970s to ?0.93°C in 2013, with an increase of about 0.37°C (the maximum spatial deviation is 0.06°C) in the past more than 40 years. This remarkable change results in that deep waters in the center of the Lofton Basin (LB) has been colder than that in the GB since the year 2007. As for the Norwegian Basin (NB), only a slight trend of warming have been shown at a depth around 2000 m since the early 1980s, and the warming amplitude at deeper waters is just slightly above the maximum spatial deviation, implying no obvious trend of warming near the bottom. The water exchange rate of the Greenland Basin is estimated to be 86% for the period from 1982 to 2013, meaning that the residence time of the Greenland Sea deep water (GSDW) is about 35 years. As the weakening of deep-reaching convection is going on, the abyssal Nordic seas are playing a role of heat reservoir in the subarctic region and this may cause a positive feedback on the deep-sea warming in both the Arctic Ocean and the Nordic seas.展开更多
Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some d...Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.展开更多
Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The re...Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.展开更多
The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and t...The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.展开更多
Deep water in the Nordic seas is the major source of Atlantic deep water and its formation and transport play an important role in the heat and mass exchange between polar and the North Atlantic. A monthly hydrolog-ic...Deep water in the Nordic seas is the major source of Atlantic deep water and its formation and transport play an important role in the heat and mass exchange between polar and the North Atlantic. A monthly hydrolog-ical climatology—Hydrobase II—is used to estimate the deep ocean circulation pattern and the deep water distribution in the Nordic seas. An improved P-vector method is applied in the geostrophic current calcula-tion which introduces sea surface height gradient to solve the issue that a residual barotropic flow cannot be recognized by traditional method in regions where motionless level does not exist. The volume proportions, spatial distributions and seasonal variations of major water masses are examined and a comparison with other hydrological dataset is carried out. The variations and transports of deep water are investigated based on estimated circulation and water mass distributions. The seasonal variation of deep water volume in the Greenland Basin is around 22×103km3 whereas significantly weaker in the Lofoten and Norwegian Basins. Annual downstream transports of about 1.54×103 and 0.64×103 km3 are reported between the Greenland/Lofoten and Lofoten/Norwegian Basins. The deep water transport among major basins is generally in the Greenland-Lofoten-Norwegian direction.展开更多
Deep-sea cobalt crusts water jet cutting method is proposed to avoid cutter impact load. With simulation calculations and experimental tests, water jet system parameters and its cutting ability were studied. Simula-ti...Deep-sea cobalt crusts water jet cutting method is proposed to avoid cutter impact load. With simulation calculations and experimental tests, water jet system parameters and its cutting ability were studied. Simula-tion results show that working pressure, ejection range and ejection angle of water jet system are main parameters of its cutting ability. Its important degree is in turn the working pressure, ejection range and ejection angle. Increasing water jet system working pressure is the most effective way to improve its cutting ability. When water jet working pressure is constant, in order to improve its cutting ability, the ejection range should be less than 4mm (four times of nozzle diameter) and the ejection angle should be about 13o. Experimental results show that there is a threshold pressure during water jet cutting cobalt crusts simulation material. With the increase of water jet working pressure, its cutting ability increases dramatically. With the increasing of water jet ejection range, its cutting ability decreases sharply. The optimal ejection angle is about 13o</sup.展开更多
BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark whi...BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.展开更多
The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water...The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.展开更多
深水钻井二开表层套管入泥深度增加,地层可钻性降低,φ660.4 mm牙轮钻头钻井存在机械钻速低、牙轮钻头耐久性差等挑战,亟需设计专用PDC喷射钻头进行深水表层喷射钻井。在分析?444.5 mm PDC钻头喷射φ914.4 mm表层导管技术优势基础上,针...深水钻井二开表层套管入泥深度增加,地层可钻性降低,φ660.4 mm牙轮钻头钻井存在机械钻速低、牙轮钻头耐久性差等挑战,亟需设计专用PDC喷射钻头进行深水表层喷射钻井。在分析?444.5 mm PDC钻头喷射φ914.4 mm表层导管技术优势基础上,针对PDC喷射作业风险、作业难点,通过钻头选型与改进、喷射水力优化、钻具优化、井身结构优化等措施构建了深水表层PDC钻头喷射钻井技术,并在南海流花、白云、荔湾等区块6口深水井取得成功应用。应用效果表明,深水表层PDC钻头喷射钻井表层二开机械钻速较常规牙轮钻头可提升2倍,可为深水表层钻井作业提供参考。展开更多
基金Supported by the China Ocean Mineral Resources Research and Development Association Program(Nos.DY135-E2-1-01,DY135-E2-4-00)the China Global Sea-Atmosphere Interaction Research Program(No.GASI-02-IND-STSsum)the S&T Innovation Project of Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ14)。
文摘Depth-dependent distribution patterns of bacterial and archaeal communities in deep sea water column around the Ninetyeast Ridge in the Indian Ocean were investigated using 16S rRNA gene profiling.Sampling was conducted at the northern Ninetyeast Ridge(1°59.89′N–9°59.70′S,87°58.90′E–88°00.03′E)from September to November 2016 where samples were collected from the bathyal(1000 m)to bathypelagic depths(>4000 m)in four different stations.A total of 1565405 clean data falling into 6712 bacterial OTUs and 1452727 clean data falling into 806 archaeal OTUs based on 97%similarity level were analyzed.Most of the bacterial 16S rRNA gene sequences were affiliated with Gammaproteobacteria,followed by Alphaproteobacteria and Bacteroidia.The archaeal 16S rRNA gene sequences mostly affiliated to Nitrososphaeria(Thaumarchaeota)dominated with relative abundances ranging from 52.68%to 97.2%,followed by Thermoplasmata(Euryarchaeota).Vertical partitioning of bacterial and archaeal communities among different water layers was observed.Canonical correspondence analysis(CCA)and Spearman’s correlations revealed that depth(P=0.003),dissolved oxygen(P=0.019),and nitrite(P=0.033)were the main environmental factors affecting bacterial community structure at genus level in the Ninetyeast Ridge.On the other hand,the first two CCA axes accounted for 74.4%of the explained total variance,it seems that the archaeal communities at genus level were heavily influenced by the environmental variables including depth,dissolved oxygen(DO),nitrite,salinity,phosphate,ammonia,nitrate,and silicate,but none of them exhibited any significant correlation on the structuring(P>0.1).
基金This study was supported by the project“the deep-water fan systems and petroleum resources in the South China Sea”(grant 40238060)sponsored by the Natural Science Foundation of China and the China National Offshore Oil Corporation.
文摘The shallow shelf delta/strand arenaceous-pelitic deposit region in the north of the Pearl River mouth basin, sitting on the northern continental shelf of the South China Sea, has already become an important oil production base in China. Recent researched has revealed that a great deal of deep-water fans of great petroleum potentiality exist on the Baiyun deep-water slope below the big paleo Pearl River and its large delta. Based on a mass of exploration wells and 2-D seismic data of the shallow shelf region, a interpretation of sequence stratigraphy confirmed the existence of deep-water fans. The cyclic falling of sea level, abundant detrital matter from the paleo Pearl River and the persistent geothermal subsidence in the Baiyun sag are the three prerequisites for the formation and development of deep-water fans. There are many in common between the deep-water shelf depositional system of the northern South China Sea and the exploration hotspots region on the two banks of the Atlantic. For example, both are located on passive continent margins, and persistent secular thermal subsidence and large paleo rivers have supplied abundant material sources and organic matter. More recently, the discovery of the big gas pool on the northern slope of the Baiyun sag confirms that the Lower Tertiary lacustrine facies in the Baiyun sag has a great potentiality of source rocks. The fans overlying the Lower Tertiary source rocks should become the main exploration areas for oil and gas resources.
基金The National Natural Science Foundation of China under contract No.41330960the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs under contract Nos CHINARE2013-04-03 and CHINARE2012-03-01
文摘The warming of deep waters in the Nordic seas is identified based on observations during Chinese 5th Arctic Expedition in 2012 and historical hydrographic data. The most obvious and earliest warming occurrs in the Greenland Basin (GB) and shows a coincident accelerated trend between depths 2000 and 3500 m. The ob-servations at a depth of 3000 m in the GB reveal that the potential temperature had increased from ?1.30°C in the early 1970s to ?0.93°C in 2013, with an increase of about 0.37°C (the maximum spatial deviation is 0.06°C) in the past more than 40 years. This remarkable change results in that deep waters in the center of the Lofton Basin (LB) has been colder than that in the GB since the year 2007. As for the Norwegian Basin (NB), only a slight trend of warming have been shown at a depth around 2000 m since the early 1980s, and the warming amplitude at deeper waters is just slightly above the maximum spatial deviation, implying no obvious trend of warming near the bottom. The water exchange rate of the Greenland Basin is estimated to be 86% for the period from 1982 to 2013, meaning that the residence time of the Greenland Sea deep water (GSDW) is about 35 years. As the weakening of deep-reaching convection is going on, the abyssal Nordic seas are playing a role of heat reservoir in the subarctic region and this may cause a positive feedback on the deep-sea warming in both the Arctic Ocean and the Nordic seas.
基金The Major State Basic Research Development Program (973 Program) under contract No. 2009CB219402
文摘Drilling wells reveal that the organic matter abundance of Miocene marine source rocks in shallow water area of the Qiongdongnan Basin is relatively low with poor hydrocarbon generation poten- tial. However, in some drilling wells of deep water area close to the central depression belt, Miocene marine source rocks with better organic matter abundance and hydrocarbon generation have been found, which have achieved better source rock standard based on the analysis of geochemical charac- teristics. Although there are no exploratory wells in deep water area of the research region, through the comparative analysis of geochemical data of several typical exploratory wells respectively from shallow water area in the basin, central depression belt margin in deep-water area of the basin and Site 1148 of deep sea drilling in the South China Sea Basin, it reveals that the tendency of the quality of source rocks becomes positive gradually from delta to bathyal environment, which then becomes negative as in deep oceanic environment. Owing to the lack of terrestrial organic matter input, the important controlling factors of Miocene marine source rocks in the Qiongdongnan Basin are ocean productivity and preservation conditions of organic matter. The element geochemistry data indicate that the tendency of the paleoproductivity and the preservation conditions of organic matter become positive as water depth increase from shallow area to bathyal area close to central depression belt. So it is speculated that there must exist high quality source rocks in the central depression area where the preservation conditions of organic matter are much better. Besides, in theory, in oxygen-poor zone of oceanic environment at the water depth 400–1 000 m, the preservation conditions of organic matter are well thus forming high-quality marine source rocks. The result- ing speculation, it is reasonable to consider that there are high hydrocarbon generation potential source rocks in bathyal environment of the Qiongdongnan Basin, especially at the water depth 400– 1 000 m.
基金This paper is supported by the National Natural Science Foundation of china (Nos. 40576031, 40476030, 40631007).
文摘Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.
基金The National Basic Research Program(973 Program)of China under contract No.2009CB219401Science and Technology Program of Guangzhou under contract No.201505041038084+2 种基金the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)under contract No.PLN1401the Key Laboratory of Gas Hydrate,Ministry of Land and Resources under contract No.SHW(2014)-DX-01the State Key Laboratory Breeding Base of Nuclear Resources and Environment,East China Institute of Technology under contract No.NRE1302
文摘The deep-water area of the northern South China Sea, which has active and complicated tectonics, is rich in natural gas and gas hydrate. While the tectonic characteristics is different obviously between the east and the west because of the special tectonic position and tectonic evolution process. In terms of submarine geomorphology, the eastern shelf-slope structure in Pearl River Mouth Basin is characterized by having wide sub-basins and narrow intervening highs, whereas the western (Qiongdongnan Basin) structure is characterized by narrow sub- basins and wide uplift. As to the structural features, the deep-water sags in the east are all structurally half- grabens, controlled by a series of south-dipping normal faults. While the west sags are mainly characterised by graben structures with faulting in both the south and north. With regards to the tectonic evolution, the east began neotectonic activity when the post-rifting stage had completed at the end of the Middle Miocene. In the Baiyun Sag, tectonic activity became strong and was characterised by rapid subsidence and obvious faulting. Whereas in the west, neotectonic activity began at the end of the Late Miocene with rapid deposition and weak fault activity.
基金The Key Project of Chinese Natural Science Fundation under contract No.41330960the Chinese Polar Environment Comprehensive Investigation and Assessment Programmes,State Oceanic Administration of China under contract Nos CHINARE2014-03-01 and CHINARE2014-04-03the Public Science and Technology Research Funds Projects of Ocean under contract No.201205007-4
文摘Deep water in the Nordic seas is the major source of Atlantic deep water and its formation and transport play an important role in the heat and mass exchange between polar and the North Atlantic. A monthly hydrolog-ical climatology—Hydrobase II—is used to estimate the deep ocean circulation pattern and the deep water distribution in the Nordic seas. An improved P-vector method is applied in the geostrophic current calcula-tion which introduces sea surface height gradient to solve the issue that a residual barotropic flow cannot be recognized by traditional method in regions where motionless level does not exist. The volume proportions, spatial distributions and seasonal variations of major water masses are examined and a comparison with other hydrological dataset is carried out. The variations and transports of deep water are investigated based on estimated circulation and water mass distributions. The seasonal variation of deep water volume in the Greenland Basin is around 22×103km3 whereas significantly weaker in the Lofoten and Norwegian Basins. Annual downstream transports of about 1.54×103 and 0.64×103 km3 are reported between the Greenland/Lofoten and Lofoten/Norwegian Basins. The deep water transport among major basins is generally in the Greenland-Lofoten-Norwegian direction.
文摘Deep-sea cobalt crusts water jet cutting method is proposed to avoid cutter impact load. With simulation calculations and experimental tests, water jet system parameters and its cutting ability were studied. Simula-tion results show that working pressure, ejection range and ejection angle of water jet system are main parameters of its cutting ability. Its important degree is in turn the working pressure, ejection range and ejection angle. Increasing water jet system working pressure is the most effective way to improve its cutting ability. When water jet working pressure is constant, in order to improve its cutting ability, the ejection range should be less than 4mm (four times of nozzle diameter) and the ejection angle should be about 13o. Experimental results show that there is a threshold pressure during water jet cutting cobalt crusts simulation material. With the increase of water jet working pressure, its cutting ability increases dramatically. With the increasing of water jet ejection range, its cutting ability decreases sharply. The optimal ejection angle is about 13o</sup.
基金supported by the National 973 Basic Research Program (Grant No. 2009CB219502)National Natural Science Foundation of China (Grant No. 41072084)
文摘BSR (Bottom Simulating Reflector) occurs widely in the strata since the late Miocene in the deep-water area of the northern continental slope of South China Sea (SCS). It is an important seismic reference mark which identifies the gas hydrate and its distribution influenced by the tectonic movements. Single-point basin modeling was conducted using 473 points in the study area. To discuss the relationships between the tectonic subsidence and BSR, the volume and rate of tectonic subsidence in each geological time have been simulated. The results show that there are three tectonic accelerate subsidence processes in the study area since the late Miocene, especially since 1.8Ma the tectonic subsidence accelerates more apparently. Since the Late Miocene to Pleistocene, the rate of tectonic subsidence in deep-water underwent a transformation from weak to strong. The ratio of tectonic subsidence to the total subsidence was relatively high (65-70%). Through the superposition of the BSR developed areas and the contours of tectonic subsidence in this area, it was discovered that more than 80% of BSR tend to be distributed at the slope break or depression-uplift structural transfer zone and the average tectonic subsidence rate ranges from 70 m/Ma to 125 m/Ma.
基金Supported by the Science and Technology Project of CNOOC Ltd.(YXKY-2012-SHENHAI-01)China National Science and Technology Major Project(2011ZX05025-003+1 种基金 2016ZX05026-003)the National Natural Science Foundation of China(91128207)
文摘The relationships between crustal stretching and thinning,basin structure and petroleum geology in Baiyun deep-water area were analyzed using large area 3D seismic,gravity,magnetic,ocean bottom seismic(OBS),deep-water exploration wells and integrated ocean drilling program(IODP).During the early syn-rifting period,deep-water area was a half-graben controlled by high angle faults influenced by the brittle extension of upper crust.In the mid syn-rifting period,this area was a broad-deep fault depression controlled by detachment faults undergone brittle-ductile deformation and differentiated extension in the crust.In the late syn-rifting period,this area experienced fault-sag transition due to saucer-shaped rheology change dominated by crustal ductile deformation.A broad-deep fault depression controlled by the large detachment faults penetrating through the crust is an important feature of deep-water basin.The study suggests that the broad-deep Baiyun sag provides great accommodation space for the development of massive deltaic-lacustrine deposition system and hydrocarbon source rocks.The differentiated lithospheric thinning also resulted in the different thermal subsidence during post-rifting period,and then controlled the development of continental shelf break and deep-water reservoir sedimentary environment.The high heat flow background caused by the strong thinning of lithosphere and the rise of mantle source resulted in particularities in the reservoir diagenesis,hydrocarbon generation process and accumulation of deep-water area in northern South China Sea.
文摘深水钻井二开表层套管入泥深度增加,地层可钻性降低,φ660.4 mm牙轮钻头钻井存在机械钻速低、牙轮钻头耐久性差等挑战,亟需设计专用PDC喷射钻头进行深水表层喷射钻井。在分析?444.5 mm PDC钻头喷射φ914.4 mm表层导管技术优势基础上,针对PDC喷射作业风险、作业难点,通过钻头选型与改进、喷射水力优化、钻具优化、井身结构优化等措施构建了深水表层PDC钻头喷射钻井技术,并在南海流花、白云、荔湾等区块6口深水井取得成功应用。应用效果表明,深水表层PDC钻头喷射钻井表层二开机械钻速较常规牙轮钻头可提升2倍,可为深水表层钻井作业提供参考。