期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
机载激光雷达点云分类研究进展与趋势
1
作者 王建楠 李楚钰 +3 位作者 唐廷元 李瀚琨 梁鹏 荣伟 《北京测绘》 2024年第4期603-608,共6页
机载激光雷达点云数据能为诸多行业应用提供框架性、基础性的技术支撑;点云数据也是智慧城市和实景三维(3D)中国建设的重要地理空间数据,高质量的点云分类能极大地提升地理空间数据的实体3D表征效果。因此,对机载激光雷达点云分类的技... 机载激光雷达点云数据能为诸多行业应用提供框架性、基础性的技术支撑;点云数据也是智慧城市和实景三维(3D)中国建设的重要地理空间数据,高质量的点云分类能极大地提升地理空间数据的实体3D表征效果。因此,对机载激光雷达点云分类的技术研究进展情况进行凝练和梳理则显得较为重要。本论文从基于众源地图、基于特征、基于神经网络与深度学习、基于多模态数据利用等方面对点云分类方法进行论述,归纳各种方法的技术优势和潜在问题,并对发展趋势进行了分析。在城市复杂场景的激光雷达点云分类场景中,通过嵌入光学影像、融合众源地图标注信息,结合神经网络和深度学习方法,进行全局推理的多模态数据耦合,实现对机载激光雷达点云的高效率、高精度、高准确性的分类,将是今后需要进行深入研究的方向。 展开更多
关键词 机载激光雷达 点云分类 神经网络 深度学习 多模态数据 点云语义化
下载PDF
Content-Based Hybrid Deep Neural Network Citation Recommendation Method
2
作者 Leipeng Wang Yuan Rao +1 位作者 Qinyu Bian Shuo Wang 《国际计算机前沿大会会议论文集》 2020年第2期3-20,共18页
The rapid growth of scientific papers makes it difficult to query related papers efficiently,accurately and with high coverage.Traditional citation recommendation algorithms rely heavily on the metadata of query docum... The rapid growth of scientific papers makes it difficult to query related papers efficiently,accurately and with high coverage.Traditional citation recommendation algorithms rely heavily on the metadata of query documents,which leads to the low quality of recommendation results.In this paper,DeepCite,a content-based hybrid neural network citation recommendation method is proposed.First,the BERT model was used to extract the high-level semantic representation vectors in the text,then the multi-scale CNN model and BiLSTM model were used to obtain the local information and the sequence information of the context in the sentence,and the text vectors were matched in depth to generate candidate sets.Further,the depth neural network was used to rerank the candidate sets by combining the score of candidate sets and multisource features.In the reranking stage,a variety of Metapath features were extracted from the citation network,and added to the deep neural network to learn,and the ranking of recommendation results were optimized.Compared with PWFC,ClusCite,BM25,RW,NNRank models,the results of the Deepcite algorithm presented in the ANN datasets show that the precision(P@20),recall rate(R@20),MRR and MAP indexesrise by 2.3%,3.9%,2.4%and 2.1%respectively.Experimental results on DBLP datasets show that the improvement is 2.4%,4.3%,1.8%and 1.2%respectively.Therefore,the algorithm proposed in this paper effectively improves the quality of citation recommendation. 展开更多
关键词 Citation recommendation Recurrent neural network Convolutional neural network BERT deep semantic matching
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部