Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Ou...Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.展开更多
The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation...The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation approaches based on convolutional neural networks(CNNs)have achieved remarkable effectiveness.Here,we extend a retinal vessel segmentation model with low complexity and high performance based on U-Net,which is one of the most popular architectures.In view of the excellent work of depth-wise separable convolution,we introduce it to replace the standard convolutional layer.The complexity of the proposed model is reduced by decreasing the number of parameters and calculations required for themodel.To ensure performance while lowering redundant parameters,we integrate the pre-trained MobileNet V2 into the encoder.Then,a feature fusion residual module(FFRM)is designed to facilitate complementary strengths by enhancing the effective fusion between adjacent levels,which alleviates extraneous clutter introduced by direct fusion.Finally,we provide detailed comparisons between the proposed SepFE and U-Net in three retinal image mainstream datasets(DRIVE,STARE,and CHASEDB1).The results show that the number of SepFE parameters is only 3%of U-Net,the Flops are only 8%of U-Net,and better segmentation performance is obtained.The superiority of SepFE is further demonstrated through comparisons with other advanced methods.展开更多
为了消除电台系统中的环境噪声和信道噪声对语音通信质量的不利影响,提升电台语音通信的质量,提出了一种基于联合通道注意力与长短时记忆网络(Long Short Term Memory,LSTM)的深度可分离U形网络CLU-Net(Channel Attention and LSTM-base...为了消除电台系统中的环境噪声和信道噪声对语音通信质量的不利影响,提升电台语音通信的质量,提出了一种基于联合通道注意力与长短时记忆网络(Long Short Term Memory,LSTM)的深度可分离U形网络CLU-Net(Channel Attention and LSTM-based U-Net)。该网络采用深度可分离卷积实现低复杂度的特征提取,联合利用注意力机制和LSTM同时关注语音通道特征和长时上下文联系,在参数量较少的情况下实现对干净语音特征的关注。在公开与实测数据集上进行多组对比实验,仿真结果表明,所提方法在VoiceBank-DEMAND数据集上的PESQ和STOI等指标得分优于同类语音增强模型。实测实验结果表明,所提CLU-Net增强框架能够有效抑制环境噪声与信道噪声,在低信噪比条件下的增强性能优于其他同类型的增强网络。展开更多
This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automat...This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.展开更多
Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning du...Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning due to a symmetricalU-structure for better feature extraction and fusing and suitable for small datasets.To enhance the segmentation performance of U-Net,cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine.However,the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one.In this article,we devise novel Inner Cascaded U-Net and Inner Cascaded U^(2)-Net as improvements to plain cascaded U-Net for medical image segmentation.The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information.To further boost segmentation performance,we propose Inner Cascaded U^(2)-Net,which applies residual U-block to capture more global contextual information from different scales.The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge(BraTS)2013 and ISBI Liver Tumor Segmentation Challenge(LiTS)dataset in comparison to related U-Net,cascaded U-Net,U-Net++,U^(2)-Net and state-of-the-art methods.Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U^(2)-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.展开更多
Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based...Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism(SE)and Depthwise Separable Convolution(DSC)is designed.Meanwhile,Adam-GC,an Adam optimization algorithm based on Gradient Compression(GC),is proposed to improve the training speed,segmentation accuracy,generalization ability and stability of the algorithm network.To verify and compare the effectiveness of the algorithm network proposed in this paper,the trained networkmodel is used for experimental verification and comparative test on the Cityscapes semantic segmentation dataset.The validation and comparison results show that the overall segmentation results of the algorithmnetwork can achieve 78.02%MIoU on Cityscapes validation set,which is better than the basic algorithm network and the other latest semantic segmentation algorithms network.Besides meeting the stability and accuracy requirements,it has a particular significance for the development of image semantic segmentation.展开更多
Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,...Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.展开更多
文摘Deep learning, especially through convolutional neural networks (CNN) such as the U-Net 3D model, has revolutionized fault identification from seismic data, representing a significant leap over traditional methods. Our review traces the evolution of CNN, emphasizing the adaptation and capabilities of the U-Net 3D model in automating seismic fault delineation with unprecedented accuracy. We find: 1) The transition from basic neural networks to sophisticated CNN has enabled remarkable advancements in image recognition, which are directly applicable to analyzing seismic data. The U-Net 3D model, with its innovative architecture, exemplifies this progress by providing a method for detailed and accurate fault detection with reduced manual interpretation bias. 2) The U-Net 3D model has demonstrated its superiority over traditional fault identification methods in several key areas: it has enhanced interpretation accuracy, increased operational efficiency, and reduced the subjectivity of manual methods. 3) Despite these achievements, challenges such as the need for effective data preprocessing, acquisition of high-quality annotated datasets, and achieving model generalization across different geological conditions remain. Future research should therefore focus on developing more complex network architectures and innovative training strategies to refine fault identification performance further. Our findings confirm the transformative potential of deep learning, particularly CNN like the U-Net 3D model, in geosciences, advocating for its broader integration to revolutionize geological exploration and seismic analysis.
基金supported by the Hunan Provincial Natural Science Foundation of China(2021JJ50074)the Scientific Research Fund of Hunan Provincial Education Department(19B082)+6 种基金the Science and Technology Development Center of the Ministry of Education-New Generation Information Technology Innovation Project(2018A02020)the Science Foundation of Hengyang Normal University(19QD12)the Science and Technology Plan Project of Hunan Province(2016TP1020)the Subject Group Construction Project of Hengyang Normal University(18XKQ02)theApplication Oriented SpecialDisciplines,Double First ClassUniversity Project of Hunan Province(Xiangjiaotong[2018]469)the Hunan Province Special Funds of Central Government for Guiding Local Science and Technology Development(2018CT5001)the First Class Undergraduate Major in Hunan Province Internet of Things Major(Xiangjiaotong[2020]248,No.288).
文摘The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation approaches based on convolutional neural networks(CNNs)have achieved remarkable effectiveness.Here,we extend a retinal vessel segmentation model with low complexity and high performance based on U-Net,which is one of the most popular architectures.In view of the excellent work of depth-wise separable convolution,we introduce it to replace the standard convolutional layer.The complexity of the proposed model is reduced by decreasing the number of parameters and calculations required for themodel.To ensure performance while lowering redundant parameters,we integrate the pre-trained MobileNet V2 into the encoder.Then,a feature fusion residual module(FFRM)is designed to facilitate complementary strengths by enhancing the effective fusion between adjacent levels,which alleviates extraneous clutter introduced by direct fusion.Finally,we provide detailed comparisons between the proposed SepFE and U-Net in three retinal image mainstream datasets(DRIVE,STARE,and CHASEDB1).The results show that the number of SepFE parameters is only 3%of U-Net,the Flops are only 8%of U-Net,and better segmentation performance is obtained.The superiority of SepFE is further demonstrated through comparisons with other advanced methods.
文摘为了消除电台系统中的环境噪声和信道噪声对语音通信质量的不利影响,提升电台语音通信的质量,提出了一种基于联合通道注意力与长短时记忆网络(Long Short Term Memory,LSTM)的深度可分离U形网络CLU-Net(Channel Attention and LSTM-based U-Net)。该网络采用深度可分离卷积实现低复杂度的特征提取,联合利用注意力机制和LSTM同时关注语音通道特征和长时上下文联系,在参数量较少的情况下实现对干净语音特征的关注。在公开与实测数据集上进行多组对比实验,仿真结果表明,所提方法在VoiceBank-DEMAND数据集上的PESQ和STOI等指标得分优于同类语音增强模型。实测实验结果表明,所提CLU-Net增强框架能够有效抑制环境噪声与信道噪声,在低信噪比条件下的增强性能优于其他同类型的增强网络。
文摘This paper presents a novel computerized technique for the segmentation of nuclei in hematoxylin and eosin(H&E)stained histopathology images.The purpose of this study is to overcome the challenges faced in automated nuclei segmentation due to the diversity of nuclei structures that arise from differences in tissue types and staining protocols,as well as the segmentation of variable-sized and overlapping nuclei.To this extent,the approach proposed in this study uses an ensemble of the UNet architecture with various Convolutional Neural Networks(CNN)architectures as encoder backbones,along with stain normalization and test time augmentation,to improve segmentation accuracy.Additionally,this paper employs a Structure-Preserving Color Normalization(SPCN)technique as a preprocessing step for stain normalization.The proposed model was trained and tested on both single-organ and multi-organ datasets,yielding an F1 score of 84.11%,mean Intersection over Union(IoU)of 81.67%,dice score of 84.11%,accuracy of 92.58%and precision of 83.78%on the multi-organ dataset,and an F1 score of 87.04%,mean IoU of 86.66%,dice score of 87.04%,accuracy of 96.69%and precision of 87.57%on the single-organ dataset.These findings demonstrate that the proposed model ensemble coupled with the right pre-processing and post-processing techniques enhances nuclei segmentation capabilities.
基金supported in part by the National Nature Science Foundation of China(No.62172299)in part by the Shanghai Municipal Science and Technology Major Project(No.2021SHZDZX0100)in part by the Fundamental Research Funds for the Central Universi-ties of China.
文摘Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction.U-Net has been the baseline model since the very beginning due to a symmetricalU-structure for better feature extraction and fusing and suitable for small datasets.To enhance the segmentation performance of U-Net,cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine.However,the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot be fully used by the latter one.In this article,we devise novel Inner Cascaded U-Net and Inner Cascaded U^(2)-Net as improvements to plain cascaded U-Net for medical image segmentation.The proposed Inner Cascaded U-Net adds inner nested connections between two U-Nets to share more contextual information.To further boost segmentation performance,we propose Inner Cascaded U^(2)-Net,which applies residual U-block to capture more global contextual information from different scales.The proposed models can be trained from scratch in an end-to-end fashion and have been evaluated on Multimodal Brain Tumor Segmentation Challenge(BraTS)2013 and ISBI Liver Tumor Segmentation Challenge(LiTS)dataset in comparison to related U-Net,cascaded U-Net,U-Net++,U^(2)-Net and state-of-the-art methods.Our experiments demonstrate that our proposed Inner Cascaded U-Net and Inner Cascaded U^(2)-Net achieve better segmentation performance in terms of dice similarity coefficient and hausdorff distance as well as get finer outline segmentation.
基金supported by Qingdao People’s Livelihood Science and Technology Plan (Grant 19-6-1-88-nsh).
文摘Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism(SE)and Depthwise Separable Convolution(DSC)is designed.Meanwhile,Adam-GC,an Adam optimization algorithm based on Gradient Compression(GC),is proposed to improve the training speed,segmentation accuracy,generalization ability and stability of the algorithm network.To verify and compare the effectiveness of the algorithm network proposed in this paper,the trained networkmodel is used for experimental verification and comparative test on the Cityscapes semantic segmentation dataset.The validation and comparison results show that the overall segmentation results of the algorithmnetwork can achieve 78.02%MIoU on Cityscapes validation set,which is better than the basic algorithm network and the other latest semantic segmentation algorithms network.Besides meeting the stability and accuracy requirements,it has a particular significance for the development of image semantic segmentation.
基金Supported by the National Natural Science Foundation of China under Grant 42274144 and under Grant 41974137.
文摘Seismic data interpolation,especially irregularly sampled data interpolation,is a critical task for seismic processing and subsequent interpretation.Recently,with the development of machine learning and deep learning,convolutional neural networks(CNNs)are applied for interpolating irregularly sampled seismic data.CNN based approaches can address the apparent defects of traditional interpolation methods,such as the low computational efficiency and the difficulty on parameters selection.However,current CNN based methods only consider the temporal and spatial features of irregularly sampled seismic data,which fail to consider the frequency features of seismic data,i.e.,the multi-scale features.To overcome these drawbacks,we propose a wavelet-based convolutional block attention deep learning(W-CBADL)network for irregularly sampled seismic data reconstruction.We firstly introduce the discrete wavelet transform(DWT)and the inverse wavelet transform(IWT)to the commonly used U-Net by considering the multi-scale features of irregularly sampled seismic data.Moreover,we propose to adopt the convolutional block attention module(CBAM)to precisely restore sampled seismic traces,which could apply the attention to both channel and spatial dimensions.Finally,we adopt the proposed W-CBADL model to synthetic and pre-stack field data to evaluate its validity and effectiveness.The results demonstrate that the proposed W-CBADL model could reconstruct irregularly sampled seismic data more effectively and more efficiently than the state-of-the-art contrastive CNN based models.