Shield tunneling and post-tunneling steady seepage are accompanied by stress and displacement variations,which could induce and influence the soil arching effect.Although there are many studies on the tunneling-induce...Shield tunneling and post-tunneling steady seepage are accompanied by stress and displacement variations,which could induce and influence the soil arching effect.Although there are many studies on the tunneling-induced soil arching effect,the research about the effect of seepage on soil arching effect is extremely lacking.In this study,a numerical model is firstly established and verified by field data.Then,a series of numerical models,whose simulation method of steady seepage is verified by adopting the conformal mapping technique,are established to study the soil arching evolution of deep-buried tunneling and post-construction steady seepage.The results indicate that seepage leads to an increase in effective vertical stress,which is consistent with the existing theory.The seepage weakens the soil arching effect resulting in the height of the arch zone reducing from 2.38D(D is the tunnel diameter)to 1.25D.The seepage leads to the further development of ground consolidation settlement,but the differential displacement in the soil mass decreases.The ground reaction curve in the steady seepage condition shows a bigger value than that after excavation.It is reasonable to control the ground loss ratio in the range of 0.5–1.0%,which can minimize overburden pressure with moderate ground deformation.展开更多
钢纤维补强能够极大提升混凝土结构物的耐久性能,非常适用于长寿命,高耐久性,并且供用环境腐蚀条件苛刻,磨耗严重的都市深层排水隧道衬砌混凝土。依据有关钢纤维补强混凝土结构的国际混凝土结构联合会制订的模型代码:fib model code 20...钢纤维补强能够极大提升混凝土结构物的耐久性能,非常适用于长寿命,高耐久性,并且供用环境腐蚀条件苛刻,磨耗严重的都市深层排水隧道衬砌混凝土。依据有关钢纤维补强混凝土结构的国际混凝土结构联合会制订的模型代码:fib model code 2010,以及欧洲的相关技术规范,结合伦敦的深层排水隧道:Lee Tunnel的具体工程实例,对如何应用钢纤维补强技术在盾构隧道衬砌混凝土管片,以及现场浇筑二次衬砌自密实混凝土进行了探讨。同时通过钢纤维补强混凝土缺口梁试件的抗折强度试验,大型梁试件的弯曲加载试验,以及试验结果的非线性有限元逆向解析,确认了钢纤维取代钢筋的结构补强性能,控制裂缝效果,以及应变硬化性能,能够满足Lee tunnel工程项目的砌筑混凝土性能要求,适用于深层排水隧道:Lee tunnel衬砌混凝土补强。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52090082,51938005,52122807,and 52108318)China Hunan Provincial Science&Technology Department(Grant Nos.2021RC3043 and 2021JJ30119).
文摘Shield tunneling and post-tunneling steady seepage are accompanied by stress and displacement variations,which could induce and influence the soil arching effect.Although there are many studies on the tunneling-induced soil arching effect,the research about the effect of seepage on soil arching effect is extremely lacking.In this study,a numerical model is firstly established and verified by field data.Then,a series of numerical models,whose simulation method of steady seepage is verified by adopting the conformal mapping technique,are established to study the soil arching evolution of deep-buried tunneling and post-construction steady seepage.The results indicate that seepage leads to an increase in effective vertical stress,which is consistent with the existing theory.The seepage weakens the soil arching effect resulting in the height of the arch zone reducing from 2.38D(D is the tunnel diameter)to 1.25D.The seepage leads to the further development of ground consolidation settlement,but the differential displacement in the soil mass decreases.The ground reaction curve in the steady seepage condition shows a bigger value than that after excavation.It is reasonable to control the ground loss ratio in the range of 0.5–1.0%,which can minimize overburden pressure with moderate ground deformation.