期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
大坝渗流安全监测数据异常检测的改进DSAE模型 被引量:3
1
作者 余红玲 王晓玲 +3 位作者 程正飞 喻葭临 吴国华 郑鸣蔚 《水力发电学报》 CSCD 北大核心 2023年第10期128-138,共11页
针对现有大坝渗流安全监测数据异常检测方法存在检测效率和精度较低的不足,以及在异常阈值拟定过程中大多未能综合考虑监测数据随机性和模糊性的问题,提出大坝渗流安全监测数据异常检测的改进深度稀疏自编码器(deep sparse autoencoder,... 针对现有大坝渗流安全监测数据异常检测方法存在检测效率和精度较低的不足,以及在异常阈值拟定过程中大多未能综合考虑监测数据随机性和模糊性的问题,提出大坝渗流安全监测数据异常检测的改进深度稀疏自编码器(deep sparse autoencoder,DSAE)模型。在以奇异谱分析方法提取监测数据残差分量的基础上,采用基于混沌初始化和非线性飞行速率改进的天鹰优化(improved Aquila optimization,IAO)算法对DSAE的超参数进行优化,建立IAO-DSAE模型,实现对监测数据残差分量的高精度重构;然后,在异常阈值的拟定过程中,将逆向云算法中的期望和熵值分别替代传统3σ法中的均值和标准差,以综合考虑监测数据的随机性和模糊性对异常阈值拟定的影响,提高异常检测结果的可靠性。工程案例研究表明,相比于基于统计模型法和3σ法的异常检测方法,根据所提方法处理后的渗流安全监测数据建立的预测模型,预测精度的平均提高幅度分别为5.56%和6.99%,验证了所提方法的有效性。 展开更多
关键词 渗流安全 异常检测 深度稀疏自编码器(dsae) 逆向云 改进天鹰优化(IAO)算法 奇异谱分析
下载PDF
A Cloud Computing Fault Detection Method Based on Deep Learning 被引量:1
2
作者 Weipeng Gao Youchan Zhu 《Journal of Computer and Communications》 2017年第12期24-34,共11页
In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition ... In the cloud computing, in order to provide reliable and continuous service, the need for accurate and timely fault detection is necessary. However, cloud failure data, especially cloud fault feature data acquisition is difficult and the amount of data is too small, with large data training methods to solve a certain degree of difficulty. Therefore, a fault detection method based on depth learning is proposed. An auto-encoder with sparse denoising is used to construct a parallel structure network. It can automatically learn and extract the fault data characteristics and realize fault detection through deep learning. The experiment shows that this method can detect the cloud computing abnormality and determine the fault more effectively and accurately than the traditional method in the case of the small amount of cloud fault feature data. 展开更多
关键词 FAULT Detection Cloud Computing auto-encoder sparse DENOISING deep Learning
下载PDF
基于改进深度稀疏自编码器及FOA-ELM的电力负荷预测 被引量:24
3
作者 张淑清 要俊波 +2 位作者 张立国 姜安琦 穆勇 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第4期49-57,共9页
智能电网的发展使得电网获取的数据逐渐增多,为了从多维大数据中获取有用信息并对短期内电力负荷进行准确的预测,提出了一种基于改进的深度稀疏自编码器(IDSAE)降维及果蝇优化算法(FOA)优化极限学习机(ELM)的短期电力负荷预测方法。将L... 智能电网的发展使得电网获取的数据逐渐增多,为了从多维大数据中获取有用信息并对短期内电力负荷进行准确的预测,提出了一种基于改进的深度稀疏自编码器(IDSAE)降维及果蝇优化算法(FOA)优化极限学习机(ELM)的短期电力负荷预测方法。将L1正则化加入到深度稀疏自编码器(DSAE)中能够诱导出更好的稀疏性,用IDSAE对影响电力负荷预测精度的高维数据进行特征降维,消除了指标间的多重共线性,实现高维数据向低维空间的压缩编码。采用FOA优化算法优化ELM的权值和阈值,得到最优值,能够克服因极限学习机随机选择权值和阈值导致预测精度低的缺点。首先将气象因素通过IDSAE降维,得到稀疏后的综合气象因素特征指标,协同电力负荷数据作为FOA优化的ELM预测模型的输入向量进行电力负荷预测。通过与DSAE-FOAELM、DSAE-ELM和IDSAE-ELM等模型的对比实验,证明了提出的预测模型能有效提高预测精度,经计算得出预测精度提升大约8%。 展开更多
关键词 短期电力负荷预测 深度稀疏自编码器(dsae) 降维 果蝇优化算法 极限学习机
下载PDF
基于栈式降噪稀疏自编码器的极限学习机 被引量:10
4
作者 张国令 王晓丹 +2 位作者 李睿 来杰 向前 《计算机工程》 CAS CSCD 北大核心 2020年第9期61-67,共7页
极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐... 极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐层输出权值,完成训练分类器,同时通过加入稀疏性约束优化网络结构,提高算法分类准确率。实验结果表明,与ELM、PCA-ELM、ELM-AE和DAE-ELM算法相比,该算法在处理高维含噪数据时分类准确率较高,并且具有较强的鲁棒性。 展开更多
关键词 极限学习机 降噪稀疏自编码器 稀疏性 深度学习 特征提取
下载PDF
深度稀疏自编码器在ECG特征提取中的应用 被引量:7
5
作者 郑淋文 周金治 黄静 《计算机工程与应用》 CSCD 北大核心 2021年第11期156-161,共6页
针对心电(ECG)信号智能分析模型中,复杂波形的特征提取困难,人工设计特征造成源信号特征丢失,标签样本不足等问题,提出了一种基于深度稀疏自编码器(Deep Sparse Auto-Encoders,DSAEs)的ECG特征提取方法。该方法在DSAEs进行贪婪逐层训练... 针对心电(ECG)信号智能分析模型中,复杂波形的特征提取困难,人工设计特征造成源信号特征丢失,标签样本不足等问题,提出了一种基于深度稀疏自编码器(Deep Sparse Auto-Encoders,DSAEs)的ECG特征提取方法。该方法在DSAEs进行贪婪逐层训练时,采用适应性矩阵估计(Adaptive moment estimation,Adam)对网络权重进行寻优,以此获得最优参数组合,同时提取出高层隐含层的输出,并作为ECG高度抽象的低维特征。最后利用支持向量机(Support Vector Machines,SVM)构建分类模型,完成对ECG的特征分类。使用MIT-BIH心律失常数据库的ECG数据进行仿真实验,结果表明,提出的ECG特征提取方法能有效地分层抽取特征,提高分类识别准确率。 展开更多
关键词 心电信号 特征提取 深度稀疏自编码器 适应性矩阵估计 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部